

Accessibility of Unencoded
Glyphs

Ken Lunde

CJKV Type Development
Adobe Systems Incorporated

bc
ftp://ftp.oreilly.com/pub/examples/nutshell/ujip/unicode/iuc13-a10-slides.pdf
ftp://ftp.oreilly.com/pub/examples/nutshell/ujip/unicode/iuc13-a10-paper.pdf

dcStatus of Today’s Input Methods

• Input Methods (IMs) allow access only to “encoded” charac-
ters

— In a legacy encoding, such as Shift-JIS, EUC-KR, or Big Five

— In Unicode encodings, such as UCS-2, UTF-8, or UTF-16

• IMs send only character codes to applications after the user
has gone through the input process

— There are no APIs in place that can serve to enhance the
communication between IMs and applications

• Almost all IMs allow the user to add new entries to the con-
version dictionary

— Most “gaiji” font packages come with supplemental conver-
sion dictionaries for multiple IMs
September 10, 1998 Copyright © 1998 Adobe Systems Incorporated

dcStatus of Today’s Font Formats

• Today’s font formats are not bound to any particular encod-
ing—all glyphs are indexed through simple integer values

— GIDs (Glyph IDs) in TrueType

— CIDs (Character IDs) in CID-keyed fonts (PostScript)

— The largest CIDFont of which I am aware has 55,880 CIDs
(includes CNS 11643-1992 plus CNS 11643-1986 Plane 15)

• Today’s CJKV fonts include many unencoded characters

— Adobe Systems’ Japanese fonts include a total of 250 JIS78
(JIS C 6226-1978) kanji variants that are not accessible under
most circumstances

• Today’s CJKV fonts include glyph substitution tables that
can be accessed by applications

— Adobe Systems’ sfnt-wrapped CIDFonts for MacOS
September 10, 1998 Copyright © 1998 Adobe Systems Incorporated

dcStatus of Today’s Applications

• QuickDraw GX—now called AAT—applications dynamically
support QuickDraw GX fonts’ typographic features

— Adobe Systems’ sfnt-wrapped CIDFonts also supported

• Other applications recognize and react to fonts’ glyph sub-
stitution tables

— Adobe Illustrator Versions 5.5J, 7.0, and higher

— Macromedia FreeHand 8.0J

— Adobe PageMaker 6.5J (but not in a very WYSIWYG way)

• Common glyph substitution features

— Simplified ⇒ Traditional

— JIS78 kanji variants

— “Expert” kanji variants
September 10, 1998 Copyright © 1998 Adobe Systems Incorporated

dcTo Encode, Or Not To Encode

• Encoding all additional characters in user-defined regions is
always an option

— Shift-JIS encoding supports up to 1,880 additional characters

— UCS-2 encoding supports up to 6,400 additional characters

— UTF-16 encoding supports 131,072 more

• Characters that can be considered variant forms of standard
(that is, encoded) characters can be left unencoded

— To be accessed through glyph substitution features

• Characters that are not considered variant forms should be
encoded

• Approximately 40 of the 250 JIS78 kanji variants are in Uni-
code—the rest have been unified
September 10, 1998 Copyright © 1998 Adobe Systems Incorporated

dcWho Needs Variant Forms?

• Professional publishing requires access to a variety of vari-
ant forms

— For dictionary publishing and other complex documents

• Consider the following Japanese kanji variants:

Standard Traditional Encoded Variants Unencoded Variants

E F G

? @ ABCD

) * 0 123456789:;
<+,-./

H IJK L
September 10, 1998 Copyright © 1998 Adobe Systems Incorporated

dcOther Types of Variants

• Annotated kana:

! ⇒ " # $ % & ' (

• Annotated numerals:

1 ⇒ ∏ A ï N ¤ q Ë
September 10, 1998 Copyright © 1998 Adobe Systems Incorporated

dcThe Two-Stage Input Model

• Given today’s state of IMs and applications, two distinct and
separate stages are required to access unencoded charac-
ters:

— The user inputs characters through the IM, which get passed
to the application—these are “encoded” characters

— The user accesses glyph substitution features through the
application’s UI

• Consider the following phrase, which is input through the
IM:

��}���|_{�

• After accessing “Traditional” and “JIS83” glyph substitution:

�X}���|`{�
September 10, 1998 Copyright © 1998 Adobe Systems Incorporated

dcThe Single-Stage Input Model

• Put simply, to make glyph substitution features accessible at
the IM level (upstream), where the users spend most of
their time for character input

— Significant performance enhancements through time savings

• Fundamental changes are required, such as new APIs and a
common interchange format

— For IMs, applications, and operating systems

— IMs no longer send only character codes to an application

— Applications must be prepared to accept more information
than only character codes

— IMs and applications must be able to communicate better,
perhaps through the operating system
September 10, 1998 Copyright © 1998 Adobe Systems Incorporated

dcThe Single-Stage Input Model (Cont’d)

• Applications are still required to expose UIs for glyph substi-
tution features

— For post-input editing purposes

— Working with legacy documents

• Necessary processes:

— IM must ascertain what font is selected in active application

— IM must ascertain whether font has glyph substitution tables

— IM must use font’s glyph substitution tables to enhance con-
version dictionary by making unencoded glyphs accessible

— IM must send character codes along with additional informa-
tion that will automatically invoke the appropriate glyph
substitution feature within the application
September 10, 1998 Copyright © 1998 Adobe Systems Incorporated

dcThe Single-Stage Input Model (Cont’d)

Font

Glyph
Substitution
Tables

IM

Glyph
Substitution
Features

Application

2: Does font have glyph substitution features?

1: What font is selected?

Conversion
Dictionary

3: Enhance conversion dictionary

4: Send character codes
and feature info
September 10, 1998 Copyright © 1998 Adobe Systems Incorporated

dcAdvantages of Unencoded Characters

• Treated the same as their encoded counterparts

— Consider searching operations

— Consider sorting operations

• Unencoded glyphs are treated the same as their encoded
counterparts because the underlying character code is that
of their encoded counterpart
September 10, 1998 Copyright © 1998 Adobe Systems Incorporated

dc

