

Perl and Multiple-byte Characters

Ken Lunde, Adobe Systems Incorporated
lunde@adobe.com

http://www.oreilly.com/~lunde/

1. Introduction

Perl currently has no built-in support for recognizing multiple-byte characters, but there is currently work

underway to add Unicode support to Perl. (A version of Perl has been made to support particular Japanese

encodings, called JPerl, but its use is not guaranteed to be portable.) There are, in the context of today’s Perl,

proven techniques for simulating multiple-byte support. Most of these techniques make extensive use of reg-

ular expressions, which is the context in which multiple-byte characters pose many problems.

Until Unicode support is built in, those who need to deal with multiple-byte characters in the context of mul-

tiple encodings or multiple locales should find the contents of this paper useful.

2. Multiple-byte Techniques

Typical text-processing tasks that require recognition of multiple-byte characters include searching, code

conversion, filtering (that is, selective code conversion), encoding detection, and encoding integrity verifica-

tion. The most important techniques for handling multiple-byte characters in these contexts include:

• Anchoring

• Trapping all characters

The following sections describe these techniques and how they are applied. But first, encoding templates

need to be discussed because they are useful—in fact, critical—for both techniques.

3. The Use of Encoding Templates

Anchoring and trapping, which will be described shortly, are best implemented by using pre-defined encod-

ing templates that specify, as a regular expression (regex), the entire theoretical encoding region for a multi-

ple-byte encoding. Because very few encodings use all possible byte values, it is easy to apply this technique

for automatically detecting encodings, and for verifying encoding integrity. The following sections provide

some example encoding templates for most CJKV encoding methods. When these encoding templates are

used in a regex, the /x modifier must be used because of the whitespace and comments used. The /o mod-

ifier should be used, too.

An example of a mixed one- and two-byte encoding is EUC-KR. The one-byte range is 0x20 through 0x7E

(we must extend this to 0x00 through 0x7F to account for control characters that may be present), and

encodes ASCII or KS-Roman (KS C 5636-1993, which is equivalent to ASCII). The two-byte range is 0xA1A1
Perl Conference 2.0 1 San Jose, CA; August 1998

Perl & Multiple-byte Characters

through 0xFEFE, and encodes KS C 5601-1992. If we express this in Perl as a regex tucked inside an easy-to-

user scalar variable, we can get the following:

$euc_kr = q{ # EUC-KR encoding
 [\x00-\x7F] # Code set 0 (ASCII or KS-Roman)
 | [\xA1-\xFE][\xA1-\xFE] # Code set 1 (KS C 5601-1992)
};

Liberal use of encoding templates can aid in code readability, and ease code maintenance. Many more

encoding templates are provided in Section 7.

4. Anchoring

The anchoring technique works by accounting for all characters (made from one or more bytes, as defined

in an encoding template) that lead up to a match. This technique is useful when performing regex-based

searches for multiple-byte characters. The following program demonstrates this technique:

#!/usr/bin/perl -w

$search = "\x8C\x95"; # " V"
$text1 = "Text 1 \x90\x56\x8C\x95\x93\xB9"; # "Text 1 WVX"
$text2 = "Text 2 \x94\x92\x8C\x8C\x95\x61"; # "Text 2 YZ["
$encoding = q{ # Shift-JIS encoding
 [\x00-\x7F] # ASCII/JIS-Roman
 | [\x81-\x9F\xE0-\xFC][\x40-\x7E\x80-\xFC] # JIS X 0208:1997
 | [\xA0-\xDF] # Half-width katakana
};

print "First attempt -- no anchoring\n";
print " Matched Text1\n" if $text1 =~ /$search/o;
print " Matched Text2\n" if $text2 =~ /$search/o;

print "Second attempt -- anchoring\n";
print " Matched Text1\n" if $text1 =~ /^ (?:$encoding)*? $search/osx;
print " Matched Text2\n" if $text2 =~ /^ (?:$encoding)*? $search/osx;

The following is the result of running the above program (assuming we name it mb-anchor.pl):

% perl mb-anchor.pl
First attempt -- no anchoring
 Matched Text1
 Matched Text2
Second attempt -- anchoring
 Matched Text1

Note how anchoring indeed causes correct matching to take place. The text stored in the variable $text2
does not contain the search character (V, 0x8C95), but its byte sequence does occur across two characters
(Z and [, 0x8C8C and 0x9561). Without this simple recognition of multiple-byte characters, searching for
multiple-byte characters can always result in false matches. Not a good thing.

But, unlike the conventional regex anchors used in Perl (such as ^ and $) and other regular expression
implementations, these “anchors” consume characters.

5. Trapping All Characters

The trapping technique is useful for code conversion, filtering, encoding detection, and encoding verifica-

tion. Like with the anchoring technique, this technique uses encoding templates.
Perl Conference 2.0 2 San Jose, CA; August 1998

Perl & Multiple-byte Characters

5.1 Code Conversion

The following program illustrates how to break up multiple-byte data into separate array elements. This
particular program doesn’t do anything terribly useful, but does check whether each character consists of
one or two bytes, then prints out two-byte characters along with their hexadecimal codes. The main line of
code that splits the target text into individual list elements is emboldened.

#!/usr/bin/perl -w

$encoding = q{ # Shift-JIS encoding
 [\x00-\x7F] # ASCII/JIS-Roman
 | [\x81-\x9F\xE0-\xFC][\x40-\x7E\x80-\xFC] # JIS X 0208:1997
 | [\xA0-\xDF] # Half-width katakana
};

while (defined($line = <STDIN>)) {
 @chars = $line =~ /$encoding/gosx; # One character per element
 foreach $char (@chars) {
 if (length($char) == 2) { # If two-byte character
 print STDOUT "0x" . ($x = uc unpack("H*",$char), $x);
 } else { # All others are one-byte characters
 print STDOUT $char;
 }
 }
 print STDOUT "\n";
}

I find this code useful in developing code converters that make use of table-driven conversion, such as con-

version between Unicode and legacy encodings. My CJKVConv.pl program, which is a Unicode-based CJKV

code converter, makes use of this technique for every type of code conversion.1

5.2 Encoding Detection & Encoding Integrity Verification

A regular expression that attempts to match all characters in the target text against an encoding template can

serve two useful purposes:

• Detect the encoding of the target text when multiple (and conflicting) encodings are possible—consider
Shift-JIS and EUC-JP encodings for Japanese whose encoding regions overlap considerably

• Verify the integrity of the file’s encoding by matching all characters against an encoding template—if
even one byte cannot be accounted for, there is a possible encoding integrity problem

The following is an example of automatic code detection:

$is_sjs = 1 if $data =~ /^ (?:$sjs)+ $/osx;
$is_euc_jp = 1 if $data =~ /^ (?:$euc_jp)+ $/osx;

If variables $sjs_out and $euc_out are both true, the encoding of the target text—whether it is a single line

or an entire buffer—is ambiguous. If only one is true, the target text follows that encoding or a subset of

each, such as pure ASCII. In fact, both $sjs_out and $euc_out would be true if the above code were

applied to data consisting of only pure ASCII. Some sort of wrapper around the above code is necessary.

The following line of code can check the integrity of a file’s encoding by attempting to match all bytes

against an encoding template:

warn "Possible encoding problem at line $.!\n" if $data !~ /^ (?:$sjs)+ $/osx;

1. ftp://ftp.oreilly.com/pub/examples/nutshell/ujip/perl/cjkvconv.pl
Perl Conference 2.0 3 San Jose, CA; August 1998

Perl & Multiple-byte Characters

Consider the following program:

#!/usr/bin/perl -w

$sjs = q{ # Shift-JIS encoding
 [\x00-\x7F] # ASCII/JIS-Roman
 | [\x81-\x9F\xE0-\xFC][\x40-\x7E\x80-\xFC] # JIS X 0208:1997
 | [\xA0-\xDF] # Half-width katakana
};
$euc_jp = q{ # EUC-JP encoding
 [\x00-\x7F] # Code set 0 (ASCII/JIS-Roman)
 | [\xA1-\xFE][\xA1-\xFE] # Code set 1 (JIS X 0208:1997)
 | \x8E[\xA0-\xDF] # Code set 2 (Half-width katakana)
 | \x8F[\xA1-\xFE][\xA1-\xFE] # Code set 3 (JIS X 0212-1990)
};

$tokyo_eucjp = "\xC5\xEC\xB5\xFE"; # MN ("Tokyo") in EUC-JP encoding
$tokyo_sjs = "\x93\x8C\x8B\x9E"; # Ditto for Shift-JIS encoding

print "Attempting Shift-JIS detection\n";
print " EUC-JP text matched\n" if $tokyo_eucjp =~ /^ (?:$sjs)+ $/osx;
print " Shift-JIS text matched\n" if $tokyo_sjs =~ /^ (?:$sjs)+ $/osx;

print "Attempting EUC-JP detection\n";
print " EUC-JP text matched\n" if $tokyo_eucjp =~ /^ (?:$euc_jp)+ $/osx;
print " Shift-JIS text matched\n" if $tokyo_sjs =~ /^ (?:$euc_jp)+ $/osx;

The results are as follows (naming the program detect.pl):

% perl detect.pl
Attempting Shift-JIS detection
 Shift-JIS text matched
Attempting EUC-JP detection
 EUC-JP text matched

As expected, the same characters in different encodings are correctly detected by this short and simple pro-

gram. Programming languages without regex facilities, such as C, may require several pages of code to per-

form the same task. The example that I used above, the two kanji M and N, happen to use bytes whose

values are unambiguously Shift-JIS or EUC-JP encoding. Automatic code detection may sometimes fail

depending on the input. In general, the more data that you feed the above technique, the greater chances for

success (“success” here is defined as matching only one encoding template, not both).

6. Algorithms or Mapping Tables?

Many techniques, such as trapping all characters, are used in CJKVConv.pl to perform code conversion and

check the integrity of a file’s encoding. However, code conversion usually requires huge table-driven solu-

tions. Some types of code conversion can be effected through proven mathematical algorithms. This is usu-

ally true of multiple encoding within a single locale (such as among ISO-2022-JP, EUC-JP, and Shift-JIS

encodings for Japanese) and for the various Unicode encodings (UCS-2, UCS-4, UTF-7, UTF-8, and UTF-16).

However, converting across locales or among Unicode and legacy encodings almost always requires map-

ping tables.

6.1 Mathematical Algorithms

The following two functions represent the algorithms for converting between ISO-2022-KR/EUC-KR and

Johab encodings as far as the symbols and hanja (Chinese characters) are concerned. While some other code
Perl Conference 2.0 4 San Jose, CA; August 1998

Perl & Multiple-byte Characters

conversions are trivial (such as toggling a bit), the ones for dealing with Johab (Korean) and Shift-JIS (Japa-

nese) encodings involve a lot more mathematics.

sub convert2johab ($) { # Convert ISO-2022-KR or EUC-KR to Johab
 my @euc = unpack("C*", $_[0]);
 my ($fe_off,$hi_off,$lo_off) = (0,0,1);
 my @out = ();

 while (($hi, $lo) = splice(@euc, 0, 2)) {
 $hi &= 127; $lo &= 127;
 $fe_off = 21 if $hi == 73;
 $fe_off = 34 if $hi == 126;
 ($hi_off,$lo_off) = ($lo_off,$hi_off) if ($hi < 74 or $hi > 125);
 push(@out, ((($hi + $hi_off) >> 1) + ($hi < 74 ? 200 : 187) - $fe_off),
 $lo + ((($hi + $lo_off) & 1) ? ($lo > 110 ? 34 : 16) : 128));
 }
 return pack("C*", @out);
}

sub johab2ks ($) { # Convert Johab to ISO-2022-KR
 my @johab = unpack("C*", $_[0]);
 my ($offset,$d8_off) = (0,0);
 my @out = ();

 while (($hi, $lo) = splice(@johab, 0, 2)) {
 $offset = 1 if ($hi > 223 and $hi < 250);
 $d8_off = ($hi == 216 and ($lo > 160 ? 94 : 42));
 push(@out, (((($hi - ($hi < 223 ? 200 : 187)) << 1) -
 ($lo < 161 ? 1 : 0) + $offset) + $d8_off),
 $lo - ($lo < 161 ? ($lo > 126 ? 34 : 16) : 128));
 }
 return pack("C*", @out);
}

Need I say more? One must wonder whether the mathematical complexity of the above algorithms are faster

than a table-driven solution using hashes. Mathematical complexity must be compared with hash initializa-

tion and lookup.

6.2 Mapping Tables

Mapping tables, which are best implemented in Perl as hashes, can serve to support code conversion among

encodings that do not have a known mathematical conversion algorithm. For example, converting among

Unicode and legacy encodings requires mapping tables. Unicode can even be used to facilitate code conver-

sion among different locales. For example, we can convert from EUC-JP (JIS X 0208:1997 and JIS X 0212-

1990, Japanese) to EUC-TW (CNS 11643-1992, Traditional Chinese) encodings using two hashes:

%eucjp2uni (EUC-JP to Unicode) and %uni2euctw (Unicode to EUC-TW). Consider the following program

(which assumes that the hashes %eucjp2uni and %uni2euctw already exist):
Perl Conference 2.0 5 San Jose, CA; August 1998

Perl & Multiple-byte Characters

#!/usr/bin/perl -w

$encoding = q{ # EUC-JP encoding
 [\x00-\x7F] # Code set 0 (ASCII/JIS-Roman)
 | [\xA1-\xFE][\xA1-\xFE] # Code set 1 (JIS X 0208:1997)
 | \x8E[\xA0-\xDF] # Code set 2 (Half-width katakana)
 | \x8F[\xA1-\xFE][\xA1-\xFE] # Code set 3 (JIS X 0212-1990)
};

while (defined($line = <STDIN>)) {
 @chars = $line =~ /$encoding/gosx; # One character per element
 foreach $char (@chars) {
 $char = pack("H*",$uni2euctw{$eucjp2uni{unpack("H*",$char)}});
 }
 $line = join("",@chars);
 print STDOUT $line;
}

Note how each character is converted into a hexadecimal form using unpack("H*",$char) , which is then

used as the key into the %eucjp2uni hash. The result (now in Unicode) is used as the key for the

%uni2euctw hash. The result is packed from a hexadecimal format back into actual characters.

Of course, if the keys and values of these hashes (mapping tables) were actual multiple-byte characters

instead of hexadecimal equivalents, pack() and unpack() would not be necessary. I tend to prefer hexa-

decimal equivalents for maintenance and human-readability reasons.

7. Encoding Template Examples

The following sections provide a number of ready-to-use CJKV encoding templates. All of these templates

describe multiple-byte encodings.

7.1 Shift-JIS Encoding—Japanese
$sjs = q{
 [\x00-\x7F] # ASCII/JIS-Roman
 | [\x81-\x9F\xE0-\xFC][\x40-\x7E\x80-\xFC] # JIS X 0208:1997
 | [\xA0-\xDF] # Half-width katakana
};

7.2 EUC-JP Encoding—Japanese
$euc_jp = q{
 [\x00-\x7F] # Code set 0 (ASCII/JIS-Roman)
 | [\xA1-\xFE][\xA1-\xFE] # Code set 1 (JIS X 0208:1997)
 | \x8E[\xA0-\xDF] # Code set 2 (Half-width katakana)
 | \x8F[\xA1-\xFE][\xA1-\xFE] # Code set 3 (JIS X 0212-1990)
};

7.3 Big Five Encoding—Traditional Chinese
$big5 = q{
 [\x00-\x7F] # ASCII/CNS-Roman
 | [\xA1-\xFE][\x40-\x7E\xA1-\xFE] # Big Five
};
Perl Conference 2.0 6 San Jose, CA; August 1998

Perl & Multiple-byte Characters

7.4 GBK & Big Five Plus Encodings—Chinese

This encoding template applies equally to GBK (extended GB 2312-80) and Big Five Plus (extended Big

Five) encodings.

$gbk = q{
 [\x00-\x7F] # ASCII or equivalent
 | [\x81-\xFE][\x40-\x7E\x80-\xFE] # Two-byte (GBK or Big Five Plus)
};

7.5 EUC-CN & EUC-KR Encodings

This encoding template applies to EUC-CN (Simplified Chinese; GB 2312-80) and EUC-KR (Korean; KS C

5601-1992) encodings.

$euc = q{
 [\x00-\x7F] # Code set 0 (ASCII or equivalent)
 | [\xA1-\xFE][\xA1-\xFE] # Code set 1 (GB 2312-80 or KS C 5601-1992)
};

7.6 EUC-TW Encoding—Traditional Chinese
$euc_tw = q{
 [\x00-\x7F] # Code set 0 (ASCII/CNS-Roman)
 | [\xA1-\xFE][\xA1-\xFE] # Code set 1 (CNS 11643-1992 Plane 1)
 | \x8E[\xA1-\xB0][\xA1-\xFE][\xA1-\xFE] # Code set 2 (CNS 11643-1992 Planes 1–16)
};

7.7 Johab Encoding—Korean
$johab = q{
 [\x00-\x7F] # ASCII/KS-Roman
 | [\x84-\xD3][\x41-\x7E\x81-\xFE] # Modern hangul
 | [\xD8-\xDE\xE0-\xF9][\x31-\x7E\x91-\xFE] # Symbols and hanja
};

7.8 UCS-2 Encoding

The following encoding template works for UCS-2 encoding in any byte order (no special treatment for
UTF-16 surrogates):

$ucs2 = q{
 [\x00-\xFF][\x00-\xFF]
};

Of course, the following would also work as long as the /s modifier is used:

$ucs2 = '..';

7.9 UTF-8 Encoding

This encoding template covers the entire UTF-8 encoding, which is a mixed one- through six-byte encoding.

Note how bytes with the values 0xFE and 0xFF are explicitly excluded, and that the three- through six-byte

regions explicitly exclude ranges that should never occur (to ensure that encoding integrity verification

works properly).
Perl Conference 2.0 7 San Jose, CA; August 1998

Perl & Multiple-byte Characters

$utf8 = q{
 [\x00-\x7F] # One-byte range
 | [\xC2-\xDF][\x80-\xBF] # Two-byte range
 | \xE0[\xA0-\xBF][\x80-\xBF] # Three-byte range
 | [\xE1-\xEF][\x80-\xBF][\x80-\xBF] # Three-byte range
 | \xF0[\x90-\xBF][\x80-\xBF][\x80-\xBF] # Four-byte range
 | [\xF1-\xF7][\x80-\xBF][\x80-\xBF][\x80-\xBF] # Four-byte range
 | \xF8[\x88-\xBF][\x80-\xBF][\x80-\xBF][\x80-\xBF] # Five-byte range
 | [\xF9-\xFB][\x80-\xBF][\x80-\xBF][\x80-\xBF][\x80-\xBF] # Five-byte range
 | \xFC[\x84-\xBF][\x80-\xBF][\x80-\xBF][\x80-\xBF][\x80-\xBF] # Six-byte range
 | \xFD[\x80-\xBF][\x80-\xBF][\x80-\xBF][\x80-\xBF][\x80-\xBF] # Six-byte range
};

7.10 UTF-16 Encoding

This encoding template is for UTF-16 encoding in big-endian byte order with support for the surrogates
area. Note that it is a mixed 16- and 32-bit (or, mixed 2- and 4-byte) encoding.

$utf16b = q{
 [\x00-\xD7\xE0-\xFF][\x00-\xFF] # UCS-2
 | [\xD8-\xDB][\x00-\xFF][\xDC-\xDF][\x00-\xFF] # UTF-16 surrogates
};

This encoding template is for UTF-16 encoding in little-endian byte order with support for the surrogates
area. Like the previous example, it is a mixed 16- and 32-bit (or, mixed 2- and 4-byte) encoding.

$utf16l = q{
 [\x00-\xFF][\x00-\xD7\xE0-\xFF] # UCS-2
 | [\x00-\xFF][\xD8-\xDB][\x00-\xFF][\xDC-\xDF] # UTF-16 surrogates
};

8. For More Information…

Appendix H of my CJKV Information Processing (O’Reilly & Associates, to appear in 1998) provides lots of

Perl code that demonstrates how to manipulate multiple-byte characters. Kazumasa Utashiro’s jcode.pl Perl

library provides Japanese code conversion facilities.1 Gisle Aas2 and Martin Schwartz3 have developed useful

Perl modules for manipulating Unicode strings: Unicode::String , Unicode::Map8 , and Unicode::Map .

Also, keep an eye on Unicode developments in Perl.4

1. ftp://ftp.iij.ad.jp/pub/IIJ/dist/utashiro/perl/

2. http://www.perl.com/CPAN/authors/Gisle_Aas/

3. http://www.perl.com/CPAN/authors/Martin_Schwartz/

4. Once Perl provides built-in support for Unicode, there is still the issue of handling legacy encodings. Legacy encodings can either
be converted to Unicode (as Java does), or handled using techniques described in this paper.
Perl Conference 2.0 8 San Jose, CA; August 1998

