Internet Engineering Task Force (IETF) A.B. Roach
Request for Comments: 6665 Tekelec
Obsoletes: 3265 July 2012
Updates: 3261, 4660

Category: Standards Track

ISSN: 2070-1721

SIP-Specific Event Notification
Abstract

This document describes an extension to the Session Initiation
Protocol (SIP) defined by RFC 3261. The purpose of this extension is
to provide an extensible framework by which SIP nodes can request
notification from remote nodes indicating that certain events have
occurred.

Note that the event notification mechanisms defined herein are NOT
intended to be a general-purpose infrastructure for all classes of
event subscription and notification.

This document represents a backwards-compatible improvement on the
original mechanism described by RFC 3265, taking into account several
years of implementation experience. Accordingly, this document
obsoletes RFC 3265. This document also updates RFC 4660 slightly to
accommodate some small changes to the mechanism that were discussed
in that document.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://lwww.rfc-editor.org/info/rfc6665.

Roach Standards Track [Page 1]

RFC 6665 SIP-Specific Event Notification July 2012

Copyright Notice

Copyright (¢) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 5
1.1. Overview of Operation 5
1.2. Documentation Conventions 6
2. Definitions L 6
3. SIP Methods for Event Notification 7
3.1. SUBSCRIBEciiiiin.. 7
3.1.1. Subscription Duration 7
3.1.2. Identification of Subscribed Events and Event
Classesciiiin... 8
3.1.3. Additional SUBSCRIBE Header Field Values 9
32 NOTIFY .o 9
3.2.1. Identification of Reported Events, Event Classes,
and CurrentState 9
4. Node Behavior 10
4.1. Subscriber Behavior 10
4.1.1. Detecting Support for SIPEvents 10
4.1.2. Creating and Maintaining Subscriptions 10
4.1.3. Receiving and Processing State Information 14
4.1.4. Forking of SUBSCRIBE Requests 16
4.2. Notifier Behavior 17
4.2.1. Subscription Establishment and Maintenance 17
4.2.2. Sending State Information to Subscribers 20
4.2.3. PSTN/Internet Interworking (PINT) Compatibility ... 23
4.3. ProxyBehavior 23
4.4, Common Behavior 24
4.4.1. Dialog Creation and Termination 24
4.4.2. Notifier Migration 24
4.4.3. Polling Resource State 25
4.4.4. "Allow-Events" Header Field Usage 26
4.5. Targeting Subscriptions at Devices 26
4.5.1. Using GRUUs to Route to Devices 27

Roach Standards Track [Page 2]

RFC 6665 SIP-Specific Event Notification July 2012

45.2. SharingDialogs 27

4.6. CANCEL Requests for SUBSCRIBE and NOTIFY Transactions . .

5. EventPackages 29
5.1. AppropriatenessofUsage 29
5.2. Event Template-Packages 30
5.3. Amount of Stateto Be Conveyed 31
5.3.1. Complete State Information.............. 31
5.3.2. StateDeltas..................... 32
5.4. Event Package Responsibilities 32
5.4.1. EventPackageName 33
5.4.2. Event Package Parameters............... 33
5.4.3. SUBSCRIBE RequestBodies............... 33
5.4.4. Subscription Duration 33
5.4.5. NOTIFY RequestBodies 34
5.4.6. Notifier Processing of SUBSCRIBE Requests 34
5.4.7. Notifier generation of NOTIFY requests 34
5.4.8. Subscriber Processing of NOTIFY Requests 34
5.4.9. Handling of Forked Requests 34
5.4.10. Rate of Notifications 35
5.4.11. State Aggregation 35
54.12. Examples 36
5.4.13. Use of URIs to Retrieve State 36
6. Security Considerations 36
6.1. AccessControl 36
6.2. Notifier Privacy Mechanism................ 36
6.3. Denial-of-Service Attacks 37
6.4. Replay Attacks 37
6.5. Man-in-the-Middle Attacks 37
6.6. Confidentiality 38
7. IANA Considerations 38
7.1. EventPackages...................... 38
7.1.1. Registration Information............... 39
7.1.2. Registration Template 40
7.2. ReasonCodes 40
7.3. Header FieldNames 41
7.4. ResponseCodes 41
8. Syntax 42
8.1. NewMethods 42
8.1.1. SUBSCRIBEMethod 42
8.1.2. NOTIFY Method 42
8.2. NewHeaderFields 42
8.2.1. "Event" HeaderField 42
8.2.2. "Allow-Events" Header Field 43
8.2.3. "Subscription-State" Header Field 43
8.3. New ResponseCodes 43
8.3.1. 202 (Accepted) Response Code 43
8.3.2. 489 (Bad Event) Response Code 44
8.4. Augmented BNF Definitions 44

Roach Standards Track [Page 3]

29

RFC 6665 SIP-Specific Event Notification July 2012

9. References, 45

9.1. Normative References 45

9.2. Informative References 46
Appendix A. Acknowledgements 48
Appendix B. Changes from RFC 3265................ 48

B.1. Bug 666: Clarify use of "expires=xxx" with "terminated" . 48
B.2. Bug 667: Reason code for unsub/poll not clearly
spelledout 48
B.3. Bug 669: Clarify: SUBSCRIBE for a duration might be
answered with a NOTIFY/expires=0............. 48
B.4. Bug 670: Dialog State Machine needs clarification 49
B.5. Bug 671: Clarify timeout-based removal of subscriptions . 49
B.6. Bug 672: Mandate "expires" in NOTIFY 49
B.7. Bug 673: INVITE 481 response effect clarification 49
B.8. Bug 677: SUBSCRIBE response matching text in error 49
B.9. Bug 695: Document is not explicit about response to
NOTIFY at subscription termination 49
B.10. Bug 696: Subscription state machine needs clarification . 49
B.11. Bug 697: Unsubscription behavior could be clarified ... 49
B.12. Bug 699: NOTIFY and SUBSCRIBE are target refresh

requests 50

B.13. Bug 722: Inconsistent 423 reason phrase text 50

B.14. Bug 741: Guidance needed on when to not include
"Allow-Events" L 50

B.15. Bug 744: 5xx to NOTIFY terminates a subscription, but
shouldnot........................ 50

B.16. Bug 752: Detection of forked requests is incorrect 50

B.17. Bug 773: Reason code needs IANA registry 50

B.18. Bug 774: Need new reason for terminating subscriptions
to resources that neverchange 50

B.19. Clarify Handling of "Route"/"Record-Route" in NOTIFY . .. 50

B.20. Eliminate Implicit Subscriptions 51

B.21. Deprecate Dialog Reuse 51

B.22. Rationalize Dialog Creation 51

B.23. Refactor Behavior Sections 51

B.24. Clarify Sections That Need to Be Present in Event
Packages......................... 51

B.25. Make CANCEL Handling More Explicit 51

B.26. Remove "State Agent" Terminology 51

B.27. Miscellaneous Changes 52

Roach Standards Track [Page 4]

RFC 6665 SIP-Specific Event Notification July 2012

1. Introduction

The ability to request asynchronous natification of events proves
useful in many types of SIP services for which cooperation between
end-nodes is required. Examples of such services include automatic
callback services (based on terminal state events), buddy lists

(based on user presence events), message waiting indications (based
on mailbox state change events), and PSTN and Internet
Internetworking (PINT) [RFC2848] status (based on call state events).

The methods described in this document provide a framework by which
notification of these events can be ordered.

The event notification mechanisms defined herein are NOT intended to
be a general-purpose infrastructure for all classes of event
subscription and notification. Meeting requirements for the general
problem set of subscription and notification is far too complex for a
single protocol. Our goal is to provide a SIP-specific framework for
event notification that is not so complex as to be unusable for

simple features, but that is still flexible enough to provide

powerful services. Note, however, that event packages based on this
framework may define arbitrarily elaborate rules that govern the
subscription and notification for the events or classes of events

they describe.

This document does not describe an extension that may be used
directly; it must be extended by other documents (herein referred to
as "event packages"). In object-oriented design terminology, it may
be thought of as an abstract base class that must be derived into an
instantiable class by further extensions. Guidelines for creating
these extensions are described in Section 5.

1.1. Overview of Operation
The general concept is that entities in the network can subscribe to
resource or call state for various resources or calls in the network,
and those entities (or entities acting on their behalf) can send
notifications when those states change.

A typical flow of messages would be:

Subscriber Notifier
[-----SUBSCRIBE---->| Request state subscription
|[<------- 200-------- | Acknowledge subscription
[<------ NOTIFY----- | Return current state information
[-------- 200------- >
|<------ NOTIFY----- | Return current state information
[-------- 200------- >|

Roach Standards Track [Page 5]

RFC 6665 SIP-Specific Event Notification July 2012

Subscriptions are expired and must be refreshed by subsequent
SUBSCRIBE requests.

1.2. Documentation Conventions

There are several paragraphs throughout this document that provide
motivational or clarifying text. Such passages are non-normative and
are provided only to assist with reader comprehension. These
passages are set off from the remainder of the text by being indented
thus:

This is an example of non-normative explanatory text. It does not
form part of the specification and is used only for clarification.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

In particular, implementors need to take careful note of the meaning

of "SHOULD" defined in RFC 2119. To rephrase: violation of "SHOULD"-
strength requirements requires careful analysis and clearly

enumerable reasons. It is a protocol violation to fail to comply

with "SHOULD"-strength requirements whimsically or for ease of
implementation.

2. Definitions

Event Package: An event package is an additional specification that
defines a set of state information to be reported by a notifier to
a subscriber. Event packages also define further syntax and
semantics that are based on the framework defined by this document
and are required to convey such state information.

Event Template-Package: An event template-package is a special kind
of event package that defines a set of states that may be applied
to all possible event packages, including itself.

Notification: Notification is the act of a notifier sending a NOTIFY
request to a subscriber to inform the subscriber of the state of a
resource.

Notifier: A natifier is a user agent that generates NOTIFY requests
for the purpose of notifying subscribers of the state of a
resource. Notifiers typically also accept SUBSCRIBE requests to
create subscriptions.

Roach Standards Track [Page 6]

RFC 6665 SIP-Specific Event Notification July 2012

Subscriber: A subscriber is a user agent that receives NOTIFY
requests from notifiers; these NOTIFY requests contain information
about the state of a resource in which the subscriber is
interested. Subscribers typically also generate SUBSCRIBE
requests and send them to notifiers to create subscriptions.

Subscription: A subscription is a set of application state
associated with a dialog. This application state includes a
pointer to the associated dialog, the event package name, and
possibly an identification token. Event packages will define
additional subscription state information. By definition,
subscriptions exist in both a subscriber and a natifier.

Subscription Migration: Subscription migration is the act of moving
a subscription from one naotifier to another notifier.

3. SIP Methods for Event Notification
3.1. SUBSCRIBE

The SUBSCRIBE method is used to request current state and state
updates from a remote node. SUBSCRIBE requests are target refresh
requests, as that term is defined in [RFC3261].

3.1.1. Subscription Duration

SUBSCRIBE requests SHOULD contain an "Expires" header field (defined
in [RFC3261]). This expires value indicates the duration of the
subscription. In order to keep subscriptions effective beyond the

duration communicated in the "Expires" header field, subscribers need

to refresh subscriptions on a periodic basis using a new SUBSCRIBE
request on the same dialog as defined in [RFC3261].

If no "Expires" header field is present in a SUBSCRIBE request, the
implied default MUST be defined by the event package being used.

200-class responses to SUBSCRIBE requests also MUST contain an
"Expires" header field. The period of time in the response MAY be
shorter but MUST NOT be longer than specified in the request. The
notifier is explicitly allowed to shorten the duration to zero. The
period of time in the response is the one that defines the duration

of the subscription.

An "expires" parameter on the "Contact" header field has no semantics

for the SUBSCRIBE method and is explicitly not equivalent to an
"Expires" header field in a SUBSCRIBE request or response.

Roach Standards Track [Page 7]

RFC 6665 SIP-Specific Event Notification July 2012

A natural consequence of this scheme is that a SUBSCRIBE request with
an "Expires" of 0 constitutes a request to unsubscribe from the
matching subscription.

In addition to being a request to unsubscribe, a SUBSCRIBE request
with "Expires" of 0 also causes a fetch of state; see
Section 4.4.3.

Notifiers may also wish to cancel subscriptions to events; this is
useful, for example, when the resource to which a subscription refers
is no longer available. Further details on this mechanism are
discussed in Section 4.2.2.

3.1.2. ldentification of Subscribed Events and Event Classes

Identification of events is provided by three pieces of information:
Request URI, Event Type, and (optionally) message body.

The Request URI of a SUBSCRIBE request, most importantly, contains
enough information to route the request to the appropriate entity per
the request routing procedures outlined in [RFC3261]. It also

contains enough information to identify the resource for which event
notification is desired, but not necessarily enough information to
uniquely identify the nature of the event (e.g.,
"sip:adam@example.com" would be an appropriate URI to subscribe to
for my presence state; it would also be an appropriate URI to
subscribe to the state of my voice mailbox).

Subscribers MUST include exactly one "Event" header field in
SUBSCRIBE requests, indicating to which event or class of events they
are subscribing. The "Event" header field will contain a token that
indicates the type of state for which a subscription is being

requested. This token will be registered with the IANA and will
correspond to an event package that further describes the semantics

of the event or event class.

If the event package to which the event token corresponds defines
behavior associated with the body of its SUBSCRIBE requests, those
semantics apply.

Event packages may also define parameters for the "Event" header

field; if they do so, they must define the semantics for such
parameters.

Roach Standards Track [Page 8]

RFC 6665 SIP-Specific Event Notification July 2012

3.1.3. Additional SUBSCRIBE Header Field Values

Because SUBSCRIBE requests create a dialog usage as defined in
[RFC3261], they MAY contain an "Accept" header field. This header
field, if present, indicates the body formats allowed in subsequent
NOTIFY requests. Event packages MUST define the behavior for
SUBSCRIBE requests without "Accept" header fields; usually, this will
connote a single, default body type.

Header values not described in this document are to be interpreted as
described in [RFC3261].

3.2. NOTIFY

NOTIFY requests are sent to inform subscribers of changes in state to
which the subscriber has a subscription. Subscriptions are created
using the SUBSCRIBE method. In legacy implementations, it is
possible that other means of subscription creation have been used.
However, this specification does not allow the creation of

subscriptions except through SUBSCRIBE requests and (for backwards-
compatibility) REFER requests [RFC3515].

NOTIFY is a target refresh request, as that term is defined in
[RFC3261].

A NOTIFY request does not terminate its corresponding subscription;
in other words, a single SUBSCRIBE request may trigger several NOTIFY
requests.

3.2.1. Identification of Reported Events, Event Classes, and Current
State

Identification of events being reported in a notification is very
similar to that described for subscription to events (see
Section 3.1.2).

As in SUBSCRIBE requests, NOTIFY request "Event" header fields MUST
contain a single event package name for which a notification is being
generated. The package name in the "Event" header field MUST match
the "Event" header field in the corresponding SUBSCRIBE request.

Event packages may define semantics associated with the body of their
NOTIFY requests; if they do so, those semantics apply. NOTIFY
request bodies are expected to provide additional details about the
nature of the event that has occurred and the resultant resource

state.

Roach Standards Track [Page 9]

RFC 6665 SIP-Specific Event Notification July 2012

When present, the body of the NOTIFY request MUST be formatted into
one of the body formats specified in the "Accept" header field of the
corresponding SUBSCRIBE request (or the default type according to the
event package description, if no "Accept" header field was

specified). This body will contain either the state of the

subscribed resource or a pointer to such state in the form of a URI

(see Section 5.4.13).

4. Node Behavior
4.1. Subscriber Behavior
4.1.1. Detecting Support for SIP Events

The extension described in this document does not make use of the
"Require" or "Proxy-Require" header fields; similarly, there is no
token defined for "Supported” header fields. Potential subscribers
may probe for the support of SIP events using the OPTIONS request
defined in [RFC3261].

The presence of "SUBSCRIBE" in the "Allow" header field of any
request or response indicates support for SIP events; further, in the
absence of an "Allow" header field, the simple presence of an "Allow-
Events" header field is sufficient to indicate that the node that

sent the message is capable of acting as a natifier (see

Section 4.4.4).

The "methods" parameter for Contact may also be used to
specifically announce support for SUBSCRIBE and NOTIFY requests
when registering. (See [RFC3840] for details on the "methods"
parameter.)

4.1.2. Creating and Maintaining Subscriptions
From the subscriber’s perspective, a subscription proceeds according

to the following state diagram. Events that result in a transition
back to the same state are not represented in this diagram.

Roach Standards Track [Page 10]

RFC 6665 SIP-Specific Event Notification July 2012

R — +
| init < +
S + |
| Retry-after
Send SUBSCRIBE expires
I I
\% Timer N Fires; |
R + SUBSCRIBE failure |
Fommmmeeeee | notify_wait |-- response; -------- + |
| e + or NOTIFY, | |
| | state=terminated | |
I I I
++ | | |== ++
I I Vo
Receive NOTIFY, Receive NOTIFY, T +]
state=active state=pending | terminated | ||
| oo +]l
| Re-subscription A A ||
Vv times out; [11
R + Receive NOTIFY, | | ||
| pending |-- state=terminated; --+ | ||
e + or 481 response | 1l

Receive NOTIFY, refresh [1]
state=active [1]

| Re-subscription |l

V times out; |1l
e + Receive NOTIFY, [1]

e >| active |[-- state=terminated; ----- +
e + or 481 response Il
to SUBSCRIBE I

I
I
I
I
|
| | to SUBSCRIBE |]
I
I
I
I
I

Subscription refresh Il
+

In the state diagram, "Re-subscription times out” means that an
attempt to refresh or update the subscription using a new SUBSCRIBE
request does not result in a NOTIFY request before the corresponding
Timer N expires.

Any transition from "notify_wait" into a "pending" or "active" state
results in a new subscription. Note that multiple subscriptions can
be generated as the result of a single SUBSCRIBE request (see
Section 4.4.1). Each of these new subscriptions exists in its own
independent state machine and runs its own set of timers.

Roach Standards Track [Page 11]

RFC 6665 SIP-Specific Event Notification July 2012

4.1.2.1. Requesting a Subscription
SUBSCRIBE is a dialog-creating method, as described in [RFC3261].

When a subscriber wishes to subscribe to a particular state for a
resource, it forms a SUBSCRIBE request. If the initial SUBSCRIBE
request represents a request outside of a dialog (as it typically

will), its construction follows the procedures outlined in [RFC3261]
for User Agent Client (UAC) request generation outside of a dialog.

This SUBSCRIBE request will be confirmed with a final response.
200-class responses indicate that the subscription has been accepted
and that a NOTIFY request will be sent immediately.

The "Expires" header field in a 200-class response to SUBSCRIBE
request indicates the actual duration for which the subscription will
remain active (unless refreshed). The received value might be

smaller than the value indicated in the SUBSCRIBE request but cannot
be larger; see Section 4.2.1 for details.

Non-200-class final responses indicate that no subscription or new
dialog usage has been created, and no subsequent NOTIFY request will
be sent. All non-200-class responses (with the exception of 489 (Bad
Event), described herein) have the same meanings and handling as
described in [RFC3261]. For the sake of clarity: if a SUBSCRIBE
request contains an "Accept" header field, but that field does not
indicate a media type that the notifier is capable of generating in

its NOTIFY requests, then the proper error response is 406 (Not
Acceptable).

4.1.2.2. Refreshing of Subscriptions

At any time before a subscription expires, the subscriber may refresh

the timer on such a subscription by sending another SUBSCRIBE request
on the same dialog as the existing subscription. The handling for

such a request is the same as for the initial creation of a

subscription except as described below.

If a SUBSCRIBE request to refresh a subscription receives a 404, 405,
410, 416, 480-485, 489, 501, or 604 response, the subscriber MUST
consider the subscription terminated. (See [RFC5057] for further
details and notes about the effect of error codes on dialogs and
usages within dialog, such as subscriptions). If the subscriber

wishes to re-subscribe to the state, he does so by composing an
unrelated initial SUBSCRIBE request with a freshly generated Call-ID
and a new, unique "From" tag (see Section 4.1.2.1).

Roach Standards Track [Page 12]

RFC 6665 SIP-Specific Event Notification July 2012

If a SUBSCRIBE request to refresh a subscription fails with any error
code other than those listed above, the original subscription is

still considered valid for the duration of the most recently known

"Expires" value as negotiated by the most recent successful SUBSCRIBE
transaction, or as communicated by a NOTIFY request in its
"Subscription-State" header field "expires" parameter.

Note that many such errors indicate that there may be a problem
with the network or the notifier such that no further NOTIFY
requests will be received.

When refreshing a subscription, a subscriber starts Timer N, set to
64*T1, when it sends the SUBSCRIBE request. If this Timer N expires
prior to the receipt of a NOTIFY request, the subscriber considers

the subscription terminated. If the subscriber receives a success
response to the SUBSCRIBE request that indicates that no NOTIFY
request will be generated -- such as the 204 response defined for use
with the optional extension described in [RFC5839] -- then it MUST
cancel Timer N.

4.1.2.3. Unsubscribing

Unsubscribing is handled in the same way as refreshing of a
subscription, with the "Expires" header field set to "0". Note that
a successful unsubscription will also trigger a final NOTIFY request.

The final NOTIFY request may or may not contain information about the
state of the resource; subscribers need to be prepared to receive
final NOTIFY requests both with and without state.

4.1.2.4. Confirmation of Subscription Creation

The subscriber can expect to receive a NOTIFY request from each node
which has processed a successful subscription or subscription

refresh. To ensure that subscribers do not wait indefinitely for a
subscription to be established, a subscriber starts a Timer N, set to
64*T1, when it sends a SUBSCRIBE request. If this Timer N expires
prior to the receipt of a NOTIFY request, the subscriber considers

the subscription failed, and cleans up any state associated with the
subscription attempt.

Until Timer N expires, several NOTIFY requests may arrive from
different destinations (see Section 4.4.1). Each of these requests
establishes a new dialog usage and a new subscription. After the
expiration of Timer N, the subscriber SHOULD reject any such NOTIFY
requests that would otherwise establish a new dialog usage with a 481
(Subscription does not exist) response code.

Roach Standards Track [Page 13]

RFC 6665 SIP-Specific Event Notification July 2012

Until the first NOTIFY request arrives, the subscriber should
consider the state of the subscribed resource to be in a neutral
state. Event package specifications MUST define this "neutral state"
in such a way that makes sense for their application (see

Section 5.4.7).

Due to the potential for out-of-order messages, packet loss, and
forking, the subscriber MUST be prepared to receive NOTIFY requests
before the SUBSCRIBE transaction has completed.

Except as noted above, processing of this NOTIFY request is the same
as in Section 4.1.3.

4.1.3. Receiving and Processing State Information

Subscribers receive information about the state of a resource to
which they have subscribed in the form of NOTIFY requests.

Upon receiving a NOTIFY request, the subscriber should check that it
matches at least one of its outstanding subscriptions; if not, it

MUST return a 481 (Subscription does not exist) response unless
another 400- or 500-class response is more appropriate. The rules
for matching NOTIFY requests with subscriptions that create a new
dialog usage are described in Section 4.4.1. Notifications for
subscriptions that were created inside an existing dialog match if
they are in the same dialog and the "Event" header fields match (as
described in Section 8.2.1).

If, for some reason, the event package designated in the "Event"
header field of the NOTIFY request is not supported, the subscriber
will respond with a 489 (Bad Event) response.

To prevent spoofing of events, NOTIFY requests SHOULD be
authenticated using any defined SIP authentication mechanism, such as
those described in Sections 22.2 and 23 of [RFC3261].

NOTIFY requests MUST contain "Subscription-State" header fields that
indicate the status of the subscription.

If the "Subscription-State" header field value is "active", it means
that the subscription has been accepted and (in general) has been
authorized. If the header field also contains an "expires"
parameter, the subscriber SHOULD take it as the authoritative
subscription duration and adjust accordingly. The "retry-after" and
"reason” parameters have no semantics for "active".

Roach Standards Track [Page 14]

RFC 6665 SIP-Specific Event Notification July 2012

If the "Subscription-State" value is "pending", the subscription has
been received by the natifier, but there is insufficient policy
information to grant or deny the subscription yet. If the header
field also contains an "expires" parameter, the subscriber SHOULD
take it as the authoritative subscription duration and adjust
accordingly. No further action is necessary on the part of the
subscriber. The "retry-after" and "reason" parameters have no
semantics for "pending”.

If the "Subscription-State" value is "terminated”, the subscriber

MUST consider the subscription terminated. The "expires" parameter
has no semantics for "terminated" -- notifiers SHOULD NOT include an
"expires" parameter on a "Subscription-State" header field with a
value of "terminated”, and subscribers MUST ignore any such
parameter, if present. If a reason code is present, the client

should behave as described below. If no reason code or an unknown
reason code is present, the client MAY attempt to re-subscribe at any
time (unless a "retry-after" parameter is present, in which case the
client SHOULD NOT attempt re-subscription until after the number of
seconds specified by the "retry-after" parameter). The reason codes
defined by this document are:

deactivated: The subscription has been terminated, but the
subscriber SHOULD retry immediately with a new subscription. One
primary use of such a status code is to allow migration of
subscriptions between nodes. The "retry-after" parameter has no
semantics for "deactivated".

probation: The subscription has been terminated, but the client
SHOULD retry at some later time (as long as the resource’s state
is still relevant to the client at that time). If a "retry-after"
parameter is also present, the client SHOULD wait at least the
number of seconds specified by that parameter before attempting to
re-subscribe.

rejected: The subscription has been terminated due to change in
authorization policy. Clients SHOULD NOT attempt to re-subscribe.
The "retry-after" parameter has no semantics for "rejected".

timeout: The subscription has been terminated because it was not
refreshed before it expired. Clients MAY re-subscribe
immediately. The "retry-after" parameter has no semantics for
"timeout". This reason code is also associated with polling of
resource state, as detailed in Section 4.4.3.

giveup: The subscription has been terminated because the notifier

could not obtain authorization in a timely fashion. If a "retry-
after" parameter is also present, the client SHOULD wait at least

Roach Standards Track [Page 15]

RFC 6665 SIP-Specific Event Notification July 2012

the number of seconds specified by that parameter before
attempting to re-subscribe; otherwise, the client MAY retry
immediately, but will likely get put back into pending state.

noresource: The subscription has been terminated because the
resource state that was being monitored no longer exists. Clients
SHOULD NOT attempt to re-subscribe. The "retry-after" parameter
has no semantics for "noresource”.

invariant: The subscription has been terminated because the resource
state is guaranteed not to change for the foreseeable future.
This may be the case, for example, when subscribing to the
location information of a fixed-location land-line telephone.
When using this reason code, notifiers are advised to include a
"retry-after" parameter with a large value (for example, 31536000
-- or one year) to prevent older clients that are RFC 3265
compliant from periodically re-subscribing. Clients SHOULD NOT
attempt to re-subscribe after receiving a reason code of
“invariant", regardless of the presence of or value of a "retry-
after" parameter.

Other specifications may define new reason codes for use with the
"Subscription-State" header field.

Once the notification is deemed acceptable to the subscriber, the
subscriber SHOULD return a 200 response. In general, it is not
expected that NOTIFY responses will contain bodies; however, they
MAY, if the NOTIFY request contained an "Accept” header field.

Other responses defined in [RFC3261] may also be returned, as
appropriate. In no case should a NOTIFY transaction extend for any
longer than the time necessary for automated processing. In
particular, s