Stream: Internet Engineering Task Force (IETF)

RFC: 9114

Category: Standards Track

Published: June 2022

ISSN: 2070-1721

Author: M. Bishop, Ed.
Akamai

RFC9114
HTTP/3

Abstract

The QUIC transport protocol has several features that are desirable in a transport for HTTP, such
as stream multiplexing, per-stream flow control, and low-latency connection establishment. This
document describes a mapping of HTTP semantics over QUIC. This document also identifies
HTTP/2 features that are subsumed by QUIC and describes how HTTP/2 extensions can be ported
to HTTP/3.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9114.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Bishop Standards Track Page 1


https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/info/rfc9114
https://trustee.ietf.org/license-info

RFC9114 HTTP/3

Table of Contents
1. Introduction
1.1. Prior Versions of HTTP
1.2. Delegation to QUIC

2. HTTP/3 Protocol Overview
2.1. Document Organization

2.2. Conventions and Terminology

3. Connection Setup and Management
3.1. Discovering an HTTP/3 Endpoint
3.1.1. HTTP Alternative Services
3.1.2. Other Schemes
3.2. Connection Establishment
3.3. Connection Reuse
4. Expressing HTTP Semantics in HTTP/3
4.1. HTTP Message Framing
4.1.1. Request Cancellation and Rejection
4.1.2. Malformed Requests and Responses
4.2. HTTP Fields
4.2.1. Field Compression
4.2.2. Header Size Constraints
4.3. HTTP Control Data
4.3.1. Request Pseudo-Header Fields
4.3.2. Response Pseudo-Header Fields
4.4. The CONNECT Method
4.5. HTTP Upgrade
4.6. Server Push
5. Connection Closure

5.1. Idle Connections

Bishop Standards Track

June 2022

Page 2



RFC9114 HTTP/3 June 2022

5.2. Connection Shutdown
5.3. Immediate Application Closure

5.4. Transport Closure

6. Stream Mapping and Usage
6.1. Bidirectional Streams
6.2. Unidirectional Streams

6.2.1. Control Streams
6.2.2. Push Streams

6.2.3. Reserved Stream Types

7. HTTP Framing Layer

7.1. Frame Layout

7.2. Frame Definitions
7.2.1. DATA
7.2.2. HEADERS
7.2.3. CANCEL_PUSH
7.2.4. SETTINGS
7.2.5. PUSH_PROMISE
7.2.6. GOAWAY
7.2.7. MAX_PUSH_ID

7.2.8. Reserved Frame Types

8. Error Handling
8.1. HTTP/3 Error Codes

9. Extensions to HTTP/3

10. Security Considerations
10.1. Server Authority
10.2. Cross-Protocol Attacks
10.3. Intermediary-Encapsulation Attacks
10.4. Cacheability of Pushed Responses
10.5. Denial-of-Service Considerations

10.5.1. Limits on Field Section Size

Bishop Standards Track Page 3



RFC9114 HTTP/3 June 2022

10.5.2. CONNECT Issues

10.6. Use of Compression

10.7. Padding and Traffic Analysis
10.8. Frame Parsing

10.9. Early Data

10.10. Migration

10.11. Privacy Considerations

11.IANA Considerations
11.1. Registration of HTTP/3 Identification String
11.2. New Registries
11.2.1. Frame Types
11.2.2. Settings Parameters
11.2.3. Error Codes
11.2.4. Stream Types

12. References
12.1. Normative References

12.2. Informative References

Appendix A. Considerations for Transitioning from HTTP/2
Al. Streams
A.2. HTTP Frame Types
A.2.1. Prioritization Differences
A.2.2. Field Compression Differences
A.2.3. Flow-Control Differences
A.2.4. Guidance for New Frame Type Definitions

A.2.5. Comparison of HTTP/2 and HTTP/3 Frame Types

A.3. HTTP/2 SETTINGS Parameters
A4. HTTP/2 Error Codes
A.4.1. Mapping between HTTP/2 and HTTP/3 Errors
Acknowledgments

Index

Bishop Standards Track Page 4



RFC9114 HTTP/3 June 2022

Author's Address

1. Introduction

HTTP semantics ([HTTP]) are used for a broad range of services on the Internet. These semantics
have most commonly been used with HTTP/1.1 and HTTP/2. HTTP/1.1 has been used over a variety
of transport and session layers, while HTTP/2 has been used primarily with TLS over TCP. HTTP/3
supports the same semantics over a new transport protocol: QUIC.

1.1. Prior Versions of HTTP

HTTP/1.1 ([HTTP/1.1]) uses whitespace-delimited text fields to convey HTTP messages. While these
exchanges are human readable, using whitespace for message formatting leads to parsing
complexity and excessive tolerance of variant behavior.

Because HTTP/1.1 does not include a multiplexing layer, multiple TCP connections are often used
to service requests in parallel. However, that has a negative impact on congestion control and
network efficiency, since TCP does not share congestion control across multiple connections.

HTTP/2 ([HTTP/2]) introduced a binary framing and multiplexing layer to improve latency
without modifying the transport layer. However, because the parallel nature of HTTP/2's
multiplexing is not visible to TCP's loss recovery mechanisms, a lost or reordered packet causes
all active transactions to experience a stall regardless of whether that transaction was directly
impacted by the lost packet.

1.2. Delegation to QUIC

The QUIC transport protocol incorporates stream multiplexing and per-stream flow control,
similar to that provided by the HTTP/2 framing layer. By providing reliability at the stream level
and congestion control across the entire connection, QUIC has the capability to improve the
performance of HTTP compared to a TCP mapping. QUIC also incorporates TLS 1.3 ([TLS]) at the
transport layer, offering comparable confidentiality and integrity to running TLS over TCP, with
the improved connection setup latency of TCP Fast Open ([TFO]).

This document defines HTTP/3: a mapping of HTTP semantics over the QUIC transport protocol,
drawing heavily on the design of HTTP/2. HTTP/3 relies on QUIC to provide confidentiality and
integrity protection of data; peer authentication; and reliable, in-order, per-stream delivery.
While delegating stream lifetime and flow-control issues to QUIC, a binary framing similar to the
HTTP/2 framing is used on each stream. Some HTTP/2 features are subsumed by QUIC, while other
features are implemented atop QUIC.

QUIC is described in [QUIC-TRANSPORT]. For a full description of HTTP/2, see [HTTP/2].

Bishop Standards Track Page 5



RFC9114 HTTP/3 June 2022

2. HTTP/3 Protocol Overview

HTTP/3 provides a transport for HTTP semantics using the QUIC transport protocol and an
internal framing layer similar to HTTP/2.

Once a client knows that an HTTP/3 server exists at a certain endpoint, it opens a QUIC
connection. QUIC provides protocol negotiation, stream-based multiplexing, and flow control.
Discovery of an HTTP/3 endpoint is described in Section 3.1.

Within each stream, the basic unit of HTTP/3 communication is a frame (Section 7.2). Each frame
type serves a different purpose. For example, HEADERS and DATA frames form the basis of HTTP
requests and responses (Section 4.1). Frames that apply to the entire connection are conveyed on
a dedicated control stream.

Multiplexing of requests is performed using the QUIC stream abstraction, which is described in
Section 2 of [QUIC-TRANSPORT]. Each request-response pair consumes a single QUIC stream.
Streams are independent of each other, so one stream that is blocked or suffers packet loss does
not prevent progress on other streams.

Server push is an interaction mode introduced in HTTP/2 ([HTTP/2]) that permits a server to push
a request-response exchange to a client in anticipation of the client making the indicated request.
This trades off network usage against a potential latency gain. Several HTTP/3 frames are used to

manage server push, such as PUSH_PROMISE, MAX_PUSH_ID, and CANCEL_PUSH.

Asin HTTP/2, request and response fields are compressed for transmission. Because HPACK
([HPACK)]) relies on in-order transmission of compressed field sections (a guarantee not provided
by QUIC), HTTP/3 replaces HPACK with QPACK ([QPACK]). QPACK uses separate unidirectional
streams to modify and track field table state, while encoded field sections refer to the state of the
table without modifying it.

2.1. Document Organization

The following sections provide a detailed overview of the lifecycle of an HTTP/3 connection:

* "Connection Setup and Management" (Section 3) covers how an HTTP/3 endpoint is
discovered and an HTTP/3 connection is established.

* "Expressing HTTP Semantics in HTTP/3" (Section 4) describes how HTTP semantics are
expressed using frames.

* "Connection Closure" (Section 5) describes how HTTP/3 connections are terminated, either
gracefully or abruptly.

The details of the wire protocol and interactions with the transport are described in subsequent
sections:

 "Stream Mapping and Usage" (Section 6) describes the way QUIC streams are used.
* "HTTP Framing Layer" (Section 7) describes the frames used on most streams.

Bishop Standards Track Page 6


https://www.rfc-editor.org/rfc/rfc9000#section-2

RFC9114 HTTP/3 June 2022

« "Error Handling" (Section 8) describes how error conditions are handled and expressed,
either on a particular stream or for the connection as a whole.

Additional resources are provided in the final sections:

 "Extensions to HTTP/3" (Section 9) describes how new capabilities can be added in future
documents.

* Amore detailed comparison between HTTP/2 and HTTP/3 can be found in Appendix A.

2.2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

This document uses the variable-length integer encoding from [QUIC-TRANSPORT].

The following terms are used:

abort: An abrupt termination of a connection or stream, possibly due to an error condition.

client: The endpoint that initiates an HTTP/3 connection. Clients send HTTP requests and
receive HTTP responses.

connection: A transport-layer connection between two endpoints using QUIC as the transport
protocol.

connection error: An error that affects the entire HTTP/3 connection.
endpoint: Either the client or server of the connection.

frame: The smallest unit of communication on a stream in HTTP/3, consisting of a header and a
variable-length sequence of bytes structured according to the frame type.

Protocol elements called "frames" exist in both this document and [QUIC-TRANSPORT]. Where
frames from [QUIC-TRANSPORT] are referenced, the frame name will be prefaced with "QUIC".
For example, "QUIC CONNECTION_CLOSE frames". References without this preface refer to
frames defined in Section 7.2.

HTTP/3 connection: A QUIC connection where the negotiated application protocol is HTTP/3.

peer: An endpoint. When discussing a particular endpoint, "peer"” refers to the endpoint that is
remote to the primary subject of discussion.

receiver: An endpoint that is receiving frames.

sender: An endpoint that is transmitting frames.

Bishop Standards Track Page 7



RFC9114 HTTP/3 June 2022

server: The endpoint that accepts an HTTP/3 connection. Servers receive HTTP requests and
send HTTP responses.

stream: A bidirectional or unidirectional bytestream provided by the QUIC transport. All
streams within an HTTP/3 connection can be considered "HTTP/3 streams", but multiple
stream types are defined within HTTP/3.

stream error: An application-level error on the individual stream.
The term "content" is defined in Section 6.4 of [HTTP].

"won nwon nmon

Finally, the terms "resource", "message", "user agent", "origin server
"proxy", and "tunnel” are defined in Section 3 of [HTTP].

non nwong

, "gateway", "intermediary",

Packet diagrams in this document use the format defined in Section 1.3 of [QUIC-TRANSPORT] to
illustrate the order and size of fields.

3. Connection Setup and Management

3.1. Discovering an HTTP/3 Endpoint

HTTP relies on the notion of an authoritative response: a response that has been determined to
be the most appropriate response for that request given the state of the target resource at the time
of response message origination by (or at the direction of) the origin server identified within the
target URI. Locating an authoritative server for an HTTP URI is discussed in Section 4.3 of [HTTP].

The "https" scheme associates authority with possession of a certificate that the client considers
to be trustworthy for the host identified by the authority component of the URI. Upon receiving a
server certificate in the TLS handshake, the client MUST verify that the certificate is an acceptable
match for the URI's origin server using the process described in Section 4.3.4 of [HTTP]. If the
certificate cannot be verified with respect to the URI's origin server, the client MUST NOT consider
the server authoritative for that origin.

A client MAY attempt access to a resource with an "https" URI by resolving the host identifier to an
IP address, establishing a QUIC connection to that address on the indicated port (including
validation of the server certificate as described above), and sending an HTTP/3 request message
targeting the URI to the server over that secured connection. Unless some other mechanism is
used to select HTTP/3, the token "h3" is used in the Application-Layer Protocol Negotiation (ALPN;
see [RFC7301]) extension during the TLS handshake.

Connectivity problems (e.g., blocking UDP) can result in a failure to establish a QUIC connection;
clients SHOULD attempt to use TCP-based versions of HTTP in this case.

Servers MAY serve HTTP/3 on any UDP port; an alternative service advertisement always includes
an explicit port, and URIs contain either an explicit port or a default port associated with the
scheme.

Bishop Standards Track Page 8


https://www.rfc-editor.org/rfc/rfc9110#section-6.4
https://www.rfc-editor.org/rfc/rfc9110#section-3
https://www.rfc-editor.org/rfc/rfc9000#section-1.3
https://www.rfc-editor.org/rfc/rfc9110#section-4.3
https://www.rfc-editor.org/rfc/rfc9110#section-4.3.4

RFC9114 HTTP/3 June 2022

3.1.1. HTTP Alternative Services

An HTTP origin can advertise the availability of an equivalent HTTP/3 endpoint via the Alt-Svc
HTTP response header field or the HTTP/2 ALTSVC frame ([ALTSVC]) using the "h3" ALPN token.

For example, an origin could indicate in an HTTP response that HTTP/3 was available on UDP
port 50781 at the same hostname by including the following header field:

Alt-Svc: h3=":50781"

On receipt of an Alt-Svc record indicating HTTP/3 support, a client MAY attempt to establish a
QUIC connection to the indicated host and port; if this connection is successful, the client can
send HTTP requests using the mapping described in this document.

3.1.2. Other Schemes

Although HTTP is independent of the transport protocol, the "http" scheme associates authority
with the ability to receive TCP connections on the indicated port of whatever host is identified
within the authority component. Because HTTP/3 does not use TCP, HTTP/3 cannot be used for
direct access to the authoritative server for a resource identified by an "http" URIL. However,
protocol extensions such as [ALTSVC] permit the authoritative server to identify other services
that are also authoritative and that might be reachable over HTTP/3.

Prior to making requests for an origin whose scheme is not "https", the client MUST ensure the
server is willing to serve that scheme. For origins whose scheme is "http", an experimental method
to accomplish this is described in [RFC8164]. Other mechanisms might be defined for various
schemes in the future.

3.2. Connection Establishment

HTTP/3 relies on QUIC version 1 as the underlying transport. The use of other QUIC transport
versions with HTTP/3 MAY be defined by future specifications.

QUIC version 1 uses TLS version 1.3 or greater as its handshake protocol. HTTP/3 clients MUST
support a mechanism to indicate the target host to the server during the TLS handshake. If the
server is identified by a domain name ([DNS-TERMS]), clients MUST send the Server Name
Indication (SNI; [RFC6066]) TLS extension unless an alternative mechanism to indicate the target
host is used.

QUIC connections are established as described in [QUIC-TRANSPORT]. During connection
establishment, HTTP/3 support is indicated by selecting the ALPN token "h3" in the TLS
handshake. Support for other application-layer protocols MAY be offered in the same handshake.

While connection-level options pertaining to the core QUIC protocol are set in the initial crypto
handshake, settings specific to HTTP/3 are conveyed in the SETTINGS frame. After the QUIC
connection is established, a SETTINGS frame MUST be sent by each endpoint as the initial frame
of their respective HTTP control stream.

Bishop Standards Track Page 9



RFC9114 HTTP/3 June 2022

3.3. Connection Reuse

HTTP/3 connections are persistent across multiple requests. For best performance, it is expected
that clients will not close connections until it is determined that no further communication with
a server is necessary (for example, when a user navigates away from a particular web page) or
until the server closes the connection.

Once a connection to a server endpoint exists, this connection MAY be reused for requests with
multiple different URI authority components. To use an existing connection for a new origin,
clients MUST validate the certificate presented by the server for the new origin server using the
process described in Section 4.3.4 of [HTTP]. This implies that clients will need to retain the server
certificate and any additional information needed to verify that certificate; clients that do not do
so will be unable to reuse the connection for additional origins.

If the certificate is not acceptable with regard to the new origin for any reason, the connection
MUST NOT be reused and a new connection SHOULD be established for the new origin. If the
reason the certificate cannot be verified might apply to other origins already associated with the
connection, the client SHOULD revalidate the server certificate for those origins. For instance, if
validation of a certificate fails because the certificate has expired or been revoked, this might be
used to invalidate all other origins for which that certificate was used to establish authority.

Clients SHOULD NOT open more than one HTTP/3 connection to a given IP address and UDP port,
where the IP address and port might be derived from a URI, a selected alternative service
([ALTSVC)), a configured proxy, or name resolution of any of these. A client MAY open multiple
HTTP/3 connections to the same IP address and UDP port using different transport or TLS
configurations but SHOULD avoid creating multiple connections with the same configuration.

Servers are encouraged to maintain open HTTP/3 connections for as long as possible but are
permitted to terminate idle connections if necessary. When either endpoint chooses to close the
HTTP/3 connection, the terminating endpoint SHOULD first send a GOAWAY frame (Section 5.2) so
that both endpoints can reliably determine whether previously sent frames have been processed
and gracefully complete or terminate any necessary remaining tasks.

A server that does not wish clients to reuse HTTP/3 connections for a particular origin can
indicate that it is not authoritative for a request by sending a 421 (Misdirected Request) status
code in response to the request; see Section 7.4 of [HTTP].

4. Expressing HTTP Semantics in HTTP/3

4.1. HTTP Message Framing

A client sends an HTTP request on a request stream, which is a client-initiated bidirectional QUIC
stream; see Section 6.1. A client MUST send only a single request on a given stream. A server sends
zero or more interim HTTP responses on the same stream as the request, followed by a single
final HTTP response, as detailed below. See Section 15 of [HTTP] for a description of interim and
final HTTP responses.

Bishop Standards Track Page 10


https://www.rfc-editor.org/rfc/rfc9110#section-4.3.4
https://www.rfc-editor.org/rfc/rfc9110#section-7.4
https://www.rfc-editor.org/rfc/rfc9110#section-15

RFC9114 HTTP/3 June 2022

Pushed responses are sent on a server-initiated unidirectional QUIC stream; see Section 6.2.2. A
server sends zero or more interim HTTP responses, followed by a single final HTTP response, in
the same manner as a standard response. Push is described in more detail in Section 4.6.

On a given stream, receipt of multiple requests or receipt of an additional HTTP response
following a final HTTP response MUST be treated as malformed.

An HTTP message (request or response) consists of:

1. the header section, including message control data, sent as a single HEADERS frame,
2. optionally, the content, if present, sent as a series of DATA frames, and
3. optionally, the trailer section, if present, sent as a single HEADERS frame.

Header and trailer sections are described in Sections 6.3 and 6.5 of [HTTP]; the content is
described in Section 6.4 of [HTTP].

Receipt of an invalid sequence of frames MUST be treated as a connection error of type
H3_FRAME_UNEXPECTED. In particular, a DATA frame before any HEADERS frame, or a
HEADERS or DATA frame after the trailing HEADERS frame, is considered invalid. Other frame
types, especially unknown frame types, might be permitted subject to their own rules; see Section
9.

A server MAY send one or more PUSH_PROMISE frames before, after, or interleaved with the
frames of a response message. These PUSH_PROMISE frames are not part of the response; see
Section 4.6 for more details. PUSH_PROMISE frames are not permitted on push streams; a pushed
response that includes PUSH_PROMISE frames MUST be treated as a connection error of type
H3_FRAME_UNEXPECTED.

Frames of unknown types (Section 9), including reserved frames (Section 7.2.8) MAY be sent on a
request or push stream before, after, or interleaved with other frames described in this section.

The HEADERS and PUSH_PROMISE frames might reference updates to the QPACK dynamic table.
While these updates are not directly part of the message exchange, they must be received and
processed before the message can be consumed. See Section 4.2 for more details.

Transfer codings (see Section 7 of [HTTP/1.1]) are not defined for HTTP/3; the Transfer-Encoding
header field MUST NOT be used.

A response MAY consist of multiple messages when and only when one or more interim responses
(1xx; see Section 15.2 of [HTTP]) precede a final response to the same request. Interim responses
do not contain content or trailer sections.

An HTTP request/response exchange fully consumes a client-initiated bidirectional QUIC stream.
After sending a request, a client MUST close the stream for sending. Unless using the CONNECT
method (see Section 4.4), clients MUST NOT make stream closure dependent on receiving a
response to their request. After sending a final response, the server MUST close the stream for
sending. At this point, the QUIC stream is fully closed.

Bishop Standards Track Page 11


https://www.rfc-editor.org/rfc/rfc9110#section-6.3
https://www.rfc-editor.org/rfc/rfc9110#section-6.5
https://www.rfc-editor.org/rfc/rfc9110#section-6.4
https://www.rfc-editor.org/rfc/rfc9112#section-7
https://www.rfc-editor.org/rfc/rfc9110#section-15.2

RFC9114 HTTP/3 June 2022

When a stream is closed, this indicates the end of the final HTTP message. Because some
messages are large or unbounded, endpoints SHOULD begin processing partial HTTP messages
once enough of the message has been received to make progress. If a client-initiated stream
terminates without enough of the HTTP message to provide a complete response, the server
SHOULD abort its response stream with the error code H3_REQUEST_INCOMPLETE.

A server can send a complete response prior to the client sending an entire request if the response
does not depend on any portion of the request that has not been sent and received. When the
server does not need to receive the remainder of the request, it MAY abort reading the request
stream, send a complete response, and cleanly close the sending part of the stream. The error
code H3_NO_ERROR SHOULD be used when requesting that the client stop sending on the request
stream. Clients MUST NOT discard complete responses as a result of having their request
terminated abruptly, though clients can always discard responses at their discretion for other
reasons. If the server sends a partial or complete response but does not abort reading the request,
clients SHOULD continue sending the content of the request and close the stream normally.

4.1.1. Request Cancellation and Rejection

Once a request stream has been opened, the request MAY be cancelled by either endpoint. Clients
cancel requests if the response is no longer of interest; servers cancel requests if they are unable
to or choose not to respond. When possible, it is RECOMMENDED that servers send an HTTP
response with an appropriate status code rather than cancelling a request it has already begun
processing.

Implementations SHOULD cancel requests by abruptly terminating any directions of a stream
that are still open. To do so, an implementation resets the sending parts of streams and aborts
reading on the receiving parts of streams; see Section 2.4 of [QUIC-TRANSPORT].

When the server cancels a request without performing any application processing, the request is
considered "rejected". The server SHOULD abort its response stream with the error code
H3_REQUEST_REJECTED. In this context, "processed" means that some data from the stream was
passed to some higher layer of software that might have taken some action as a result. The client
can treat requests rejected by the server as though they had never been sent at all, thereby
allowing them to be retried later.

Servers MUST NOT use the H3_REQUEST_REJECTED error code for requests that were partially or
fully processed. When a server abandons a response after partial processing, it SHOULD abort its
response stream with the error code H3_REQUEST_CANCELLED.

Client SHOULD use the error code H3_REQUEST_CANCELLED to cancel requests. Upon receipt of
this error code, a server MAY abruptly terminate the response using the error code
H3_REQUEST_REJECTED if no processing was performed. Clients MUST NOT use the
H3_REQUEST_REJECTED error code, except when a server has requested closure of the request
stream with this error code.

If a stream is cancelled after receiving a complete response, the client MAY ignore the
cancellation and use the response. However, if a stream is cancelled after receiving a partial
response, the response SHOULD NOT be used. Only idempotent actions such as GET, PUT, or

Bishop Standards Track Page 12


https://www.rfc-editor.org/rfc/rfc9000#section-2.4

RFC9114 HTTP/3 June 2022

DELETE can be safely retried; a client SHOULD NOT automatically retry a request with a non-
idempotent method unless it has some means to know that the request semantics are idempotent
independent of the method or some means to detect that the original request was never applied.
See Section 9.2.2 of [HTTP] for more details.

4.1.2. Malformed Requests and Responses

A malformed request or response is one that is an otherwise valid sequence of frames but is
invalid due to:

* the presence of prohibited fields or pseudo-header fields,

* the absence of mandatory pseudo-header fields,

* invalid values for pseudo-header fields,

» pseudo-header fields after fields,

e an invalid sequence of HTTP messages,

* the inclusion of uppercase field names, or

* the inclusion of invalid characters in field names or values.

A request or response that is defined as having content when it contains a Content-Length header
field (Section 8.6 of [HTTP]) is malformed if the value of the Content-Length header field does not
equal the sum of the DATA frame lengths received. A response that is defined as never having
content, even when a Content-Length is present, can have a non-zero Content-Length header
field even though no content is included in DATA frames.

Intermediaries that process HTTP requests or responses (i.e.,, any intermediary not acting as a
tunnel) MUST NOT forward a malformed request or response. Malformed requests or responses
that are detected MUST be treated as a stream error of type H3_MESSAGE_ERROR.

For malformed requests, a server MAY send an HTTP response indicating the error prior to closing
or resetting the stream. Clients MUST NOT accept a malformed response. Note that these
requirements are intended to protect against several types of common attacks against HTTP;
they are deliberately strict because being permissive can expose implementations to these
vulnerabilities.

4.2. HTTP Fields

HTTP messages carry metadata as a series of key-value pairs called "HTTP fields"; see Sections 6.3
and 6.5 of [HTTP]. For a listing of registered HTTP fields, see the "Hypertext Transfer Protocol
(HTTP) Field Name Registry" maintained at <https://www.iana.org/assignments/http-fields/>. Like
HTTP/2, HTTP/3 has additional considerations related to the use of characters in field names, the
Connection header field, and pseudo-header fields.

Field names are strings containing a subset of ASCII characters. Properties of HTTP field names
and values are discussed in more detail in Section 5.1 of [HTTP]. Characters in field names MUST
be converted to lowercase prior to their encoding. A request or response containing uppercase
characters in field names MUST be treated as malformed.

Bishop Standards Track Page 13


https://www.rfc-editor.org/rfc/rfc9110#section-9.2.2
https://www.rfc-editor.org/rfc/rfc9110#section-8.6
https://www.rfc-editor.org/rfc/rfc9110#section-6.3
https://www.rfc-editor.org/rfc/rfc9110#section-6.5
https://www.iana.org/assignments/http-fields/
https://www.rfc-editor.org/rfc/rfc9110#section-5.1

RFC9114 HTTP/3 June 2022

HTTP/3 does not use the Connection header field to indicate connection-specific fields; in this
protocol, connection-specific metadata is conveyed by other means. An endpoint MUST NOT
generate an HTTP/3 field section containing connection-specific fields; any message containing
connection-specific fields MUST be treated as malformed.

The only exception to this is the TE header field, which MAY be present in an HTTP/3 request
header; when it is, it MUST NOT contain any value other than "trailers".

An intermediary transforming an HTTP/1.x message to HTTP/3 MUST remove connection-specific
header fields as discussed in Section 7.6.1 of [HTTP], or their messages will be treated by other
HTTP/3 endpoints as malformed.

4.2.1. Field Compression

[QPACK] describes a variation of HPACK that gives an encoder some control over how much head-
of-line blocking can be caused by compression. This allows an encoder to balance compression
efficiency with latency. HTTP/3 uses QPACK to compress header and trailer sections, including the
control data present in the header section.

To allow for better compression efficiency, the Cookie header field ([COOKIES]) MAY be split into
separate field lines, each with one or more cookie-pairs, before compression. If a decompressed
field section contains multiple cookie field lines, these MUST be concatenated into a single byte
string using the two-byte delimiter of "; " (ASCII 0x3b, 0x20) before being passed into a context
other than HTTP/2 or HTTP/3, such as an HTTP/1.1 connection, or a generic HTTP server
application.

4.2.2. Header Size Constraints

An HTTP/3 implementation MAY impose a limit on the maximum size of the message header it
will accept on an individual HTTP message. A server that receives a larger header section than it
iswilling to handle can send an HTTP 431 (Request Header Fields Too Large) status code
([RFC6585]). A client can discard responses that it cannot process. The size of a field list is
calculated based on the uncompressed size of fields, including the length of the name and value
in bytes plus an overhead of 32 bytes for each field.

If an implementation wishes to advise its peer of this limit, it can be conveyed as a number of
bytes in the SETTINGS_MAX_FIELD_SECTION_SIZE parameter. An implementation that has
received this parameter SHOULD NOT send an HTTP message header that exceeds the indicated
size, as the peer will likely refuse to process it. However, an HTTP message can traverse one or
more intermediaries before reaching the origin server; see Section 3.7 of [HTTP]. Because this
limit is applied separately by each implementation that processes the message, messages below
this limit are not guaranteed to be accepted.

4.3. HTTP Control Data

Like HTTP/2, HTTP/3 employs a series of pseudo-header fields, where the field name begins with
the : character (ASCII 0x3a). These pseudo-header fields convey message control data; see Section
6.2 of [HTTP].

Bishop Standards Track Page 14


https://www.rfc-editor.org/rfc/rfc9110#section-7.6.1
https://www.rfc-editor.org/rfc/rfc9110#section-3.7
https://www.rfc-editor.org/rfc/rfc9110#section-6.2
https://www.rfc-editor.org/rfc/rfc9110#section-6.2

RFC9114 HTTP/3 June 2022

Pseudo-header fields are not HTTP fields. Endpoints MUST NOT generate pseudo-header fields
other than those defined in this document. However, an extension could negotiate a modification
of this restriction; see Section 9.

Pseudo-header fields are only valid in the context in which they are defined. Pseudo-header fields
defined for requests MUST NOT appear in responses; pseudo-header fields defined for responses
MUST NOT appear in requests. Pseudo-header fields MUST NOT appear in trailer sections.
Endpoints MUST treat a request or response that contains undefined or invalid pseudo-header
fields as malformed.

All pseudo-header fields MUST appear in the header section before regular header fields. Any
request or response that contains a pseudo-header field that appears in a header section after a
regular header field MUST be treated as malformed.

4.3.1. RequestPseudo-Header Fields

The following pseudo-header fields are defined for requests:

":method™ Containsthe HTTP method (Section 9 of [HTTP])
":scheme™ Contains the scheme portion of the target URI (Section 3.1 of [URI]).

The :scheme pseudo-header is not restricted to URIs with scheme "http" and "https". A proxy or
gateway can translate requests for non-HTTP schemes, enabling the use of HTTP to interact
with non-HTTP services.

See Section 3.1.2 for guidance on using a scheme other than "https".

":authority™: Contains the authority portion of the target URI (Section 3.2 of [URI]). The authority
MUST NOT include the deprecated userinfo subcomponent for URIs of scheme "http" or "https".

To ensure that the HTTP/1.1 request line can be reproduced accurately, this pseudo-header field
MUST be omitted when translating from an HTTP/1.1 request that has a request target in a
method-specific form; see Section 7.1 of [HTTP]. Clients that generate HTTP/3 requests directly
SHOULD use the :authority pseudo-header field instead of the Host header field. An
intermediary that converts an HTTP/3 request to HTTP/1.1 MUST create a Host field if one is
not present in a request by copying the value of the :authority pseudo-header field.

":path"™: Contains the path and query parts of the target URI (the "path-absolute” production and
optionally a ? character (ASCII 0x3f) followed by the "query" production; see Sections 3.3 and
3.4 of [URI].

This pseudo-header field MUST NOT be empty for "http" or "https" URIs; "http" or "https" URIs
that do not contain a path component MUST include a value of / (ASCII 0x2f). An OPTIONS
request that does not include a path component includes the value * (ASCII 0x2a) for the :path
pseudo-header field; see Section 7.1 of [HTTP].

Bishop Standards Track Page 15


https://www.rfc-editor.org/rfc/rfc9110#section-9
https://www.rfc-editor.org/rfc/rfc3986#section-3.1
https://www.rfc-editor.org/rfc/rfc3986#section-3.2
https://www.rfc-editor.org/rfc/rfc9110#section-7.1
https://www.rfc-editor.org/rfc/rfc3986#section-3.3
https://www.rfc-editor.org/rfc/rfc3986#section-3.4
https://www.rfc-editor.org/rfc/rfc9110#section-7.1

RFC9114 HTTP/3 June 2022

All HTTP/3 requests MUST include exactly one value for the :method, :scheme, and :path pseudo-
header fields, unless the request is a CONNECT request; see Section 4.4.

If the :scheme pseudo-header field identifies a scheme that has a mandatory authority
component (including "http" and "https"), the request MUST contain either an :authority pseudo-
header field or a Host header field. If these fields are present, they MUST NOT be empty. If both
fields are present, they MUST contain the same value. If the scheme does not have a mandatory
authority component and none is provided in the request target, the request MUST NOT contain
the :authority pseudo-header or Host header fields.

An HTTP request that omits mandatory pseudo-header fields or contains invalid values for those
pseudo-header fields is malformed.

HTTP/3 does not define a way to carry the version identifier that is included in the HTTP/1.1
request line. HTTP/3 requests implicitly have a protocol version of "3.0".

4.3.2. Response Pseudo-Header Fields

For responses, a single ":status" pseudo-header field is defined that carries the HTTP status code;
see Section 15 of [HTTP]. This pseudo-header field MUST be included in all responses; otherwise,
the response is malformed (see Section 4.1.2).

HTTP/3 does not define a way to carry the version or reason phrase that is included in an HTTP/
1.1 status line. HTTP/3 responses implicitly have a protocol version of "3.0".

4.4. The CONNECT Method

The CONNECT method requests that the recipient establish a tunnel to the destination origin
server identified by the request-target; see Section 9.3.6 of [HTTP]. It is primarily used with HTTP
proxies to establish a TLS session with an origin server for the purposes of interacting with "https"
resources.

In HTTP/1.x, CONNECT is used to convert an entire HTTP connection into a tunnel to a remote
host. In HTTP/2 and HTTP/3, the CONNECT method is used to establish a tunnel over a single
stream.

A CONNECT request MUST be constructed as follows:

* The :method pseudo-header field is set to "CONNECT"
* The :scheme and :path pseudo-header fields are omitted

* The :authority pseudo-header field contains the host and port to connect to (equivalent to the
authority-form of the request-target of CONNECT requests; see Section 7.1 of [HTTP]).

The request stream remains open at the end of the request to carry the data to be transferred. A
CONNECT request that does not conform to these restrictions is malformed.

Bishop Standards Track Page 16


https://www.rfc-editor.org/rfc/rfc9110#section-15
https://www.rfc-editor.org/rfc/rfc9110#section-9.3.6
https://www.rfc-editor.org/rfc/rfc9110#section-7.1

RFC9114 HTTP/3 June 2022

A proxy that supports CONNECT establishes a TCP connection ([RFC0793]) to the server identified
in the :authority pseudo-header field. Once this connection is successfully established, the proxy
sends a HEADERS frame containing a 2xx series status code to the client, as defined in Section
15.3 of [HTTP].

All DATA frames on the stream correspond to data sent or received on the TCP connection. The
payload of any DATA frame sent by the client is transmitted by the proxy to the TCP server; data
received from the TCP server is packaged into DATA frames by the proxy. Note that the size and
number of TCP segments is not guaranteed to map predictably to the size and number of HTTP
DATA or QUIC STREAM frames.

Once the CONNECT method has completed, only DATA frames are permitted to be sent on the
stream. Extension frames MAY be used if specifically permitted by the definition of the extension.
Receipt of any other known frame type MUST be treated as a connection error of type

H3 FRAME_UNEXPECTED.

The TCP connection can be closed by either peer. When the client ends the request stream (that is,
the receive stream at the proxy enters the "Data Recvd" state), the proxy will set the FIN bit on its
connection to the TCP server. When the proxy receives a packet with the FIN bit set, it will close
the send stream that it sends to the client. TCP connections that remain half closed in a single
direction are not invalid, but are often handled poorly by servers, so clients SHOULD NOT close a
stream for sending while they still expect to receive data from the target of the CONNECT.

ATCP connection error is signaled by abruptly terminating the stream. A proxy treats any error
in the TCP connection, which includes receiving a TCP segment with the RST bit set, as a stream
error of type H3_CONNECT_ERROR.

Correspondingly, if a proxy detects an error with the stream or the QUIC connection, it MUST close
the TCP connection. If the proxy detects that the client has reset the stream or aborted reading
from the stream, it MUST close the TCP connection. If the stream is reset or reading is aborted by
the client, a proxy SHOULD perform the same operation on the other direction in order to ensure
that both directions of the stream are cancelled. In all these cases, if the underlying TCP
implementation permits it, the proxy SHOULD send a TCP segment with the RST bit set.

Since CONNECT creates a tunnel to an arbitrary server, proxies that support CONNECT SHOULD
restrict its use to a set of known ports or a list of safe request targets; see Section 9.3.6 of [HTTP]
for more details.

4.5. HTTP Upgrade

HTTP/3 does not support the HTTP Upgrade mechanism (Section 7.8 of [HTTP]) or the 101
(Switching Protocols) informational status code (Section 15.2.2 of [HTTP]).

4.6. Server Push

Bishop Standards Track Page 17


https://www.rfc-editor.org/rfc/rfc9110#section-15.3
https://www.rfc-editor.org/rfc/rfc9110#section-15.3
https://www.rfc-editor.org/rfc/rfc9110#section-9.3.6
https://www.rfc-editor.org/rfc/rfc9110#section-7.8
https://www.rfc-editor.org/rfc/rfc9110#section-15.2.2

RFC9114 HTTP/3 June 2022

Server pushis an interaction mode that permits a server to push a request-response exchange to
a client in anticipation of the client making the indicated request. This trades off network usage

against a potential latency gain. HTTP/3 server push is similar to what is described in Section 8.2
of [HTTP/2], but it uses different mechanisms.

Each server push is assigned a unique push ID by the server. The push ID is used to refer to the
push in various contexts throughout the lifetime of the HTTP/3 connection.

The push ID space begins at zero and ends at a maximum value set by the MAX_PUSH_ID frame.
In particular, a server is not able to push until after the client sends a MAX_PUSH_ID frame. A
client sends MAX_PUSH_ID frames to control the number of pushes that a server can promise. A
server SHOULD use push IDs sequentially, beginning from zero. A client MUST treat receipt of a
push stream as a connection error of type H3_ID_ERROR when no MAX_PUSH_ID frame has been
sent or when the stream references a push ID that is greater than the maximum push ID.

The push ID is used in one or more PUSH_PROMISE frames that carry the control data and header
fields of the request message. These frames are sent on the request stream that generated the
push. This allows the server push to be associated with a client request. When the same push ID is
promised on multiple request streams, the decompressed request field sections MUST contain the
same fields in the same order, and both the name and the value in each field MUST be identical.

The push ID is then included with the push stream that ultimately fulfills those promises. The push
stream identifies the push ID of the promise that it fulfills, then contains a response to the
promised request as described in Section 4.1.

Finally, the push ID can be used in CANCEL_PUSH frames; see Section 7.2.3. Clients use this frame
to indicate they do not wish to receive a promised resource. Servers use this frame to indicate
they will not be fulfilling a previous promise.

Not all requests can be pushed. A server MAY push requests that have the following properties:

e cacheable; see Section 9.2.3 of [HTTP]
* safe; see Section 9.2.1 of [HTTP]
* does not include request content or a trailer section

The server MUST include a value in the :authority pseudo-header field for which the server is
authoritative. If the client has not yet validated the connection for the origin indicated by the
pushed request, it MUST perform the same verification process it would do before sending a
request for that origin on the connection; see Section 3.3. If this verification fails, the client MUST
NOT consider the server authoritative for that origin.

Clients SHOULD send a CANCEL_PUSH frame upon receipt of a PUSH_PROMISE frame carrying a
request that is not cacheable, is not known to be safe, that indicates the presence of request
content, or for which it does not consider the server authoritative. Any corresponding responses
MUST NOT be used or cached.

Bishop Standards Track Page 18


https://www.rfc-editor.org/rfc/rfc9113#section-8.2
https://www.rfc-editor.org/rfc/rfc9110#section-9.2.3
https://www.rfc-editor.org/rfc/rfc9110#section-9.2.1

RFC9114 HTTP/3 June 2022

Each pushed response is associated with one or more client requests. The push is associated with
the request stream on which the PUSH_PROMISE frame was received. The same server push can
be associated with additional client requests using a PUSH_PROMISE frame with the same push ID
on multiple request streams. These associations do not affect the operation of the protocol, but
they MAY be considered by user agents when deciding how to use pushed resources.

Ordering of a PUSH_PROMISE frame in relation to certain parts of the response is important. The
server SHOULD send PUSH_PROMISE frames prior to sending HEADERS or DATA frames that
reference the promised responses. This reduces the chance that a client requests a resource that
will be pushed by the server.

Due to reordering, push stream data can arrive before the corresponding PUSH_PROMISE frame.
When a client receives a new push stream with an as-yet-unknown push ID, both the associated
client request and the pushed request header fields are unknown. The client can buffer the stream
data in expectation of the matching PUSH_PROMISE. The client can use stream flow control
(Section 4.1 of [QUIC-TRANSPORT]) to limit the amount of data a server may commit to the
pushed stream. Clients SHOULD abort reading and discard data already read from push streams if
no corresponding PUSH_PROMISE frame is processed in a reasonable amount of time.

Push stream data can also arrive after a client has cancelled a push. In this case, the client can
abort reading the stream with an error code of H3_REQUEST_CANCELLED. This asks the server
not to transfer additional data and indicates that it will be discarded upon receipt.

Pushed responses that are cacheable (see Section 3 of [HTTP-CACHING]) can be stored by the
client, if it implements an HTTP cache. Pushed responses are considered successfully validated on
the origin server (e.g., if the "no-cache" cache response directive is present; see Section 5.2.2.4 of
[HTTP-CACHING]) at the time the pushed response is received.

Pushed responses that are not cacheable MUST NOT be stored by any HTTP cache. They MAY be
made available to the application separately.

5. Connection Closure

Once established, an HTTP/3 connection can be used for many requests and responses over time
until the connection is closed. Connection closure can happen in any of several different ways.

5.1. Idle Connections

Each QUIC endpoint declares an idle timeout during the handshake. If the QUIC connection
remains idle (no packets received) for longer than this duration, the peer will assume that the
connection has been closed. HTTP/3 implementations will need to open a new HTTP/3 connection
for new requests if the existing connection has been idle for longer than the idle timeout
negotiated during the QUIC handshake, and they SHOULD do so if approaching the idle timeout;
see Section 10.1 of [QUIC-TRANSPORT].

Bishop Standards Track Page 19


https://www.rfc-editor.org/rfc/rfc9000#section-4.1
https://www.rfc-editor.org/rfc/rfc9111#section-3
https://www.rfc-editor.org/rfc/rfc9111#section-5.2.2.4
https://www.rfc-editor.org/rfc/rfc9000#section-10.1

RFC9114 HTTP/3 June 2022

HTTP clients are expected to request that the transport keep connections open while there are
responses outstanding for requests or server pushes, as described in Section 10.1.2 of [QUIC-
TRANSPORT]. If the client is not expecting a response from the server, allowing an idle
connection to time out is preferred over expending effort maintaining a connection that might
not be needed. A gateway MAY maintain connections in anticipation of need rather than incur
the latency cost of connection establishment to servers. Servers SHOULD NOT actively keep
connections open.

5.2. Connection Shutdown

Even when a connection is not idle, either endpoint can decide to stop using the connection and
initiate a graceful connection close. Endpoints initiate the graceful shutdown of an HTTP/3
connection by sending a GOAWAY frame. The GOAWAY frame contains an identifier that
indicates to the receiver the range of requests or pushes that were or might be processed in this
connection. The server sends a client-initiated bidirectional stream ID; the client sends a push ID.
Requests or pushes with the indicated identifier or greater are rejected (Section 4.1.1) by the
sender of the GOAWAY. This identifier MAY be zero if no requests or pushes were processed.

The information in the GOAWAY frame enables a client and server to agree on which requests or
pushes were accepted prior to the shutdown of the HTTP/3 connection. Upon sending a GOAWAY
frame, the endpoint SHOULD explicitly cancel (see Sections 4.1.1 and 7.2.3) any requests or pushes
that have identifiers greater than or equal to the one indicated, in order to clean up transport
state for the affected streams. The endpoint SHOULD continue to do so as more requests or pushes
arrive.

Endpoints MUST NOT initiate new requests or promise new pushes on the connection after receipt
of a GOAWAY frame from the peer. Clients MAY establish a new connection to send additional
requests.

Some requests or pushes might already be in transit:

* Upon receipt of a GOAWAY frame, if the client has already sent requests with a stream ID
greater than or equal to the identifier contained in the GOAWAY frame, those requests will not
be processed. Clients can safely retry unprocessed requests on a different HTTP connection. A
client that is unable to retry requests loses all requests that are in flight when the server closes
the connection.

Requests on stream IDs less than the stream ID in a GOAWAY frame from the server might
have been processed; their status cannot be known until a response is received, the stream is
reset individually, another GOAWAY is received with a lower stream ID than that of the
request in question, or the connection terminates.

Servers MAY reject individual requests on streams below the indicated ID if these requests
were not processed.

o If a server receives a GOAWAY frame after having promised pushes with a push ID greater
than or equal to the identifier contained in the GOAWAY frame, those pushes will not be
accepted.

Bishop Standards Track Page 20


https://www.rfc-editor.org/rfc/rfc9000#section-10.1.2

RFC9114 HTTP/3 June 2022

Servers SHOULD send a GOAWAY frame when the closing of a connection is known in advance,
even if the advance notice is small, so that the remote peer can know whether or not a request
has been partially processed. For example, if an HTTP client sends a POST at the same time that a
server closes a QUIC connection, the client cannot know if the server started to process that POST
request if the server does not send a GOAWAY frame to indicate what streams it might have acted
on.

An endpoint MAY send multiple GOAWAY frames indicating different identifiers, but the identifier
in each frame MUST NOT be greater than the identifier in any previous frame, since clients might
already have retried unprocessed requests on another HTTP connection. Receiving a GOAWAY
containing a larger identifier than previously received MUST be treated as a connection error of
type H3_ID_ERROR.

An endpoint that is attempting to gracefully shut down a connection can send a GOAWAY frame

with a value set to the maximum possible value (262—4 for servers, 2821 for clients). This ensures
that the peer stops creating new requests or pushes. After allowing time for any in-flight requests
or pushes to arrive, the endpoint can send another GOAWAY frame indicating which requests or
pushes it might accept before the end of the connection. This ensures that a connection can be
cleanly shut down without losing requests.

A client has more flexibility in the value it chooses for the Push ID field in a GOAWAY that it sends.

Avalue of 2621 indicates that the server can continue fulfilling pushes that have already been
promised. A smaller value indicates the client will reject pushes with push IDs greater than or
equal to this value. Like the server, the client MAY send subsequent GOAWAY frames so long as the
specified push ID is no greater than any previously sent value.

Even when a GOAWAY indicates that a given request or push will not be processed or accepted
upon receipt, the underlying transport resources still exist. The endpoint that initiated these
requests can cancel them to clean up transport state.

Once all accepted requests and pushes have been processed, the endpoint can permit the
connection to become idle, or it MAY initiate an immediate closure of the connection. An
endpoint that completes a graceful shutdown SHOULD use the H3_NO_ERROR error code when
closing the connection.

If a client has consumed all available bidirectional stream IDs with requests, the server need not
send a GOAWAY frame, since the client is unable to make further requests.

5.3. Immediate Application Closure

An HTTP/3 implementation can immediately close the QUIC connection at any time. This results
in sending a QUIC CONNECTION_CLOSE frame to the peer indicating that the application layer
has terminated the connection. The application error code in this frame indicates to the peer why
the connect