
RFC 9923
The FNV Non-Cryptographic Hash Algorithm

Abstract
FNV (Fowler/Noll/Vo) is a fast, non-cryptographic hash algorithm with good dispersion that has
been widely used and is referenced in a number of standards documents. The purpose of this
document is to make information on FNV and open-source code performing all specified sizes of
FNV conveniently available to the Internet community.

Stream: Independent Submission
RFC: 9923
Category: Informational
Published: January 2026
ISSN: 2070-1721
Authors: G. Fowler

Google
L. Noll K. Vo

Google
D. Eastlake 3rd
Independent

T. Hansen
AT&T

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor
has chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9923

Copyright Notice
Copyright (c) 2026 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Fowler, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9923
https://www.rfc-editor.org/info/rfc9923
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Conventions Used in This Document

1.2. Applicability of Non-Cryptographic Hashes and FNV

1.3. FNV Hash Uses

1.4. Why Is FNV Non-Cryptographic?

2. FNV Basics

2.1. FNV Primes

2.2. FNV offset_basis

2.3. FNV Endianism

3. Other Hash Sizes and XOR Folding

4. Hashing Multiple Values Together

5. FNV Constants

6. Security Considerations

6.1. Inducing Collisions

7. Historical Notes

8. The Source Code

8.1. Source Code Details

8.1.1. FNV Functions Available

8.1.2. Source Files and 64-Bit Support

8.1.3. Command Line Interface

8.2. FNV-1a C Code

8.2.1. FNV32 Code

8.2.2. FNV64 Code

8.2.3. FNV128 Code

8.2.4. FNV256 Code

8.2.5. FNV512 Code

8.2.6. FNV1024 Code

3

3

3

4

5

6

6

7

7

8

9

10

12

13

14

14

14

14

15

16

16

20

28

42

52

62

72

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 2

1. Introduction
FNV (Fowler/Noll/Vo) hashes are designed to be fast and have a small code footprint. Their good
dispersion makes them particularly well suited for hashing nearly identical strings, including
URLs, hostnames, filenames, text, and IP and Media Access Control (MAC) addresses. Their speed
allows one to quickly hash lots of data.

The purpose of this document is to make information on FNV and open-source code performing
all specified sizes of FNV conveniently available to the Internet community. This work is not an
Internet Standard and does not have the consensus of the IETF community.

1.1. Conventions Used in This Document
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

8.3. FNV Test Code

8.4. Makefile

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Work Comparison with SHA-1 and SHA-256

Appendix B. Previous IETF FNV Code

Acknowledgements

Authors' Addresses

83

105

105

105

105

106

108

109

110

110

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Collision:

First Pre-Image:

1.2. Applicability of Non-Cryptographic Hashes and FNV
While a general theory of hash function strength and utility is beyond the scope of this
document, typical attacks on hash functions involve one of the following:

Finding two data inputs that yield the same hash output.

Given a hash output, finding a data input that hashes to that output.

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 3

Second Pre-Image: Given a first data input, finding a second input that produces the same hash
output as the first.

For a hash function producing N bits, there necessarily will be collisions among the hashes of
more than 2N distinct inputs. And if the hash function can produce hashes covering all 2N

possible outputs, then there will exist first and second pre-images. FNV is
for any application that requires that it be computationally infeasible for one of the above types
of attacks to succeed.

FNV hashes are generally not applicable for use when faced with an active adversary in a
security scheme where the modest effort required to compute FNV hashes (see Appendix A) and
their other non-cryptographic characteristics (see Section 1.4) would make the scheme
ineffective against the threat model being considered. It is sometimes hard to determine
whether or not there are attack vectors via a hash.

For a discussion of adversarial inducement of collisions, see Section 6.1.

NOT RECOMMENDED

1.3. FNV Hash Uses
The FNV hash has been widely used. Examples include the following:

NFS implementations (e.g., FreeBSD 4.3 , IRIX, Linux (NFS v4)),
text-based referenced resources for video games on the PS2, Gamecube, and XBOX,
to improve the fragment cache at X (formerly Twitter),
the flatassembler open-source x86 assembler - user-defined symbol hashtree ,
used in the speed-sensitive guts of , an open-source structured namespace
manager,
database indexing hashes,
PowerBASIC inline assembly routine ,
major web search / indexing engines,
the "calc" C-style calculator ,
netnews history file Message-ID lookup functions,

 - a tool to identify file data structures / help understand file formats,
anti-spam filters,
used in an implementation of libketama for use in items such as ,
a spellchecker programmed in Ada 95,
used in the BSD Integrated Development Environments (IDE) project ,
non-cryptographic file fingerprints,
used in the deliantra game server for its shared string implementation ,
computing Unique IDs in DASM (DTN (Delay Tolerant Networking) Applications for Symbian
Mobile-phones),
Microsoft's hash_map implementation for VC++ 2005,
the realpath cache in PHP 5.x (php-5.2.3/TSRM/tsrm_virtual_cwd.c),

• [FreeBSD]
•
• [FragCache]
• [flatassembler]
• [twistylists]

•
• [BASIC]
•
• [calc]
•
• [FRET]
•
• [libketama] [memcache]
•
• [fasmlab]
•
• [deliantra]
•

•
•

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 4

DNS (Domain Name System) servers,
used to improve , an extremely fast wordlist creator,
the Smash utility for rapidly finding duplicate files,
Golf language hash tables ,
the libsir logging library ,
a standard library for modern Fortran ,

and many other uses. It is also referenced in the following standards documents: ,
, and .

A study has recommended FNV in connection with the IPv6 flow label value .
Additionally, there was a proposal to use FNV for Bidirectional Forwarding Detection (BFD)
sequence number generation . discusses criteria for evaluating non-
cryptographic hash functions.

If you use an FNV function in an application, you are kindly requested to send a note via the
process outlined at .

•
• [Leprechaun]
• [Smash]
• [RimStone]
• [libsir]
• [Fortran]

[RFC7357]
[RFC7873] [IEEE8021Q-2022]

[IPv6flow]

[BFDseq] [NCHF]

<http://www.isthe.com/chongo/tech/comp/fnv/index.html#history>

1.4. Why Is FNV Non-Cryptographic?
A full discussion of cryptographic hash requirements and strength is beyond the scope of this
document. However, here are three characteristics of FNV that would generally be considered to
make it non-cryptographic:

Sticky State - A cryptographic hash should not have a state in which it can stick for a
plausible input pattern. But in the very unlikely event that the FNV hash variable
accidentally becomes zero and the input is a sequence of zero bytes, the hash variable will
remain at zero until there is a non-zero input byte and the final hash value will be
unaffected by the length of that sequence of zero input bytes. For the common case of fixed-
length input, this would usually not be significant because the number of non-zero bytes
would vary inversely with the number of zero bytes and for some types of input, runs of
zeros do not occur. Furthermore, the use of a different offset_basis or the inclusion of even a
little unpredictable input may be sufficient, under some circumstances, to stop an adversary
from inducing a zero hash variable (see Section 6.1).
Diffusion - Every output bit of a cryptographic hash should be an equally complex function
of every input bit. But it is easy to see that the least significant bit of a direct FNV hash is the
XOR of the least significant bits of every input byte and does not depend on any other input
bits. While more complex, the second through seventh least significant bits of an FNV hash
have a similar weakness; only the top bit of the bottom byte of output, and higher-order bits,
depend on all input bits. If these properties are considered a problem, they can be easily
fixed by XOR folding (see Section 3).
Work Factor - Depending on intended use, it is frequently desirable that a hash function
should be computationally expensive for general-purpose and graphics processors, since
these may be profusely available through elastic cloud services or botnets. This is applied to
slow down testing of possible inputs if the output is known or the like. But FNV is designed
to be inexpensive on a general-purpose processor (see Appendix A).

1.

2.

3.

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 5

http://www.isthe.com/chongo/tech/comp/fnv/index.html#history

2. FNV Basics
This document focuses on the FNV-1a function, whose pseudocode is as follows:

In the pseudocode above, hash is a power-of-2 number of bits (HashSize is 32, 64, 128, 256, 512,
or 1024), and offset_basis and FNV_Prime depend on the size of hash.

The FNV-1 algorithm is the same, including the values of offset_basis and FNV_Prime, except that
the order of the two lines with the "XOR" and multiply operations is reversed. Operational
experience indicates better hash dispersion for small amounts of data with FNV-1a. FNV-0 is the
same as FNV-1 but with offset_basis set to zero. FNV-1a is suggested for general use.

2.1. FNV Primes
The theory behind FNV_Primes is beyond the scope of this document, but the basic property to
look for is how an FNV_Prime would impact dispersion. Now, consider any n-bit FNV hash
where n >= 32 and is also a power of 2 -- in particular, n = 2s. For each such n-bit FNV hash, an
FNV_Prime p is defined as follows:

When s is an integer and 4 < s < 11, FNV_Prime is the smallest prime p of the form:

where b is an integer such that:

The number of one bits in b is four or five
and where

Nevertheless, none of the above have proven to be a problem in actual practice for the many
non-cryptographic applications of FNV (see Section 1.3).

 hash = offset_basis
 for each octet_of_data to be hashed
 hash = hash XOR octet_of_data
 hash = hash * FNV_Prime mod 2**HashSize
 return hash

•

 256**int((5 + 2**s)/12) + 2**8 + b

•

 0 < b < 2**8

•
•

 (p mod (2**40 - 2**24 - 1)) > (2**24 + 2**8 + 2**7)

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 6

Experimentally, FNV_Primes matching the above constraints tend to have better dispersion
properties. They improve the polynomial feedback characteristic when an FNV_Prime multiplies
an intermediate hash value. As such, the hash values produced are more scattered throughout
the n-bit hash space.

The case where s < 5 is not considered due to the resulting low hash quality. Such small hashes
can, if desired, be derived from a 32-bit FNV hash by XOR folding (see Section 3). The case where
s > 10 is not considered because of the doubtful utility of such large FNV hashes and because the
criteria for such large FNV_Primes would be more complex, due to the sparsity of such large
primes, and would needlessly clutter the criteria given above.

Per the above constraints, an FNV_Prime should have only six or seven one bits in it: one
relatively high-order one bit, the 29 bit, and four or five one bits in the low-order byte.
Therefore, some compilers may seek to improve the performance of a multiplication with an
FNV_Prime by replacing the multiplication with shifts and adds. However, the performance of
this substitution is highly hardware dependent and should be done with care. The selection of
FNV_Primes prioritizes the quality of the resulting hash function, not compiler optimization
considerations.

2.2. FNV offset_basis
The offset_basis values for the n-bit FNV-1a algorithms are computed by applying the n-bit
FNV-0 algorithm to the following 32-octet ASCII character string:

or, in C notation , the following string:

In the general case, almost any offset_basis would serve as long as it is non-zero. However, FNV
hashes calculated with different offset_basis values will not interoperate. The choice of a non-
standard offset_basis may be beneficial in some limited circumstances to defend against attacks
that try to induce hash collisions as discussed in Section 6.1. Any entity that can observe the FNV
hash output and can cause the null string (the string of length zero) to be hashed will thereby be
able to directly observe the offset_basis which will be the hash output.

[RFC0020]

 chongo <Landon Curt Noll> /\../\

[C]

 "chongo <Landon Curt Noll> /\\../\\"

2.3. FNV Endianism
For persistent storage or interoperability between different hardware platforms, an FNV hash
shall be represented in the little-endian format . That is, the FNV hash will be stored in
an array hash[N] with N bytes such that its integer value can be retrieved as follows:

[IEN137]

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 7

However, when FNV hashes are used in a single process or a group of processes sharing memory
on processors with compatible endianness, the natural endianness of those processors can be
used, as long as it is used consistently, regardless of its type -- little, big, or some other exotic
form.

The code provided in Section 8 has FNV hash functions that return a little-endian byte vector for
all lengths. Because they are more efficient, the code also provides functions that return FNV
hashes as 32-bit integers or, where supported, 64-bit integers, for those sizes of FNV hash. Such
integers are compatible with the same-size byte vectors on little-endian computers, but the use
of the functions returning integers on big-endian or other non-little-endian machines will be
byte-reversed or otherwise incompatible with the byte vector return values.

 unsigned char hash[N];
 for (i = N-1, value = 0; i >= 0; --i)
 value = (value << 8) + hash[i];

3. Other Hash Sizes and XOR Folding
Many hash uses require a hash that is not one of the FNV sizes for which constants are provided
in Section 5. If a larger hash size is needed, please contact the authors of this document.

For scenarios where a fixed-size binary field of k bits is desired with k < 1024 but not among the
constants provided in Section 5, the recommended approach involves using the smallest FNV
hash of size S where S > k and employing XOR folding, as shown below. The final bit-masking
operation is logically unnecessary if the size of the variable k-bit-hash is exactly k bits.

A somewhat stronger hash may be obtained for exact FNV sizes by calculating an FNV twice as
long as the desired output (S = 2*k) and performing such XOR data folding using a k equal to the
size of the desired output. However, if a much stronger hash is desired, cryptographic
algorithms, such as those specified in or , should be used.

If it is desired to obtain a hash result that is a value between 0 and max, where max+1 is not a
power of 2, simply choose an FNV hash size S such that 2S > max. Then, calculate the following:

The resulting remainder will be in the range desired but will suffer from a bias against large
values, with the bias being larger if 2S is only slightly larger than max. If this bias is acceptable,
no further processing is needed. If this bias is unacceptable, it can be avoided by retrying for
certain high values of hash, as follows, before applying the mod operation above:

 temp = FNV_S (data-to-be-hashed)
 k-bit-hash = (temp XOR temp>>k) bitwise-and (2**k - 1)

[FIPS202] [RFC6234]

 FNV_S mod (max+1)

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 8

 X = (int((2**S - 1) / (max+1))) * (max+1)
 while (hash >= X)
 hash = (hash * FNV_Prime) + offset_basis

4. Hashing Multiple Values Together
Sometimes, there are multiple different component values, say three strings X, Y, and Z, where a
hash over all of them is desired. The simplest thing to do is to concatenate them in a fixed order
and compute the hash of that concatenation, as in

where the vertical bar character ("|") represents string concatenation. If the components being
combined are of variable length, some information is lost by simple concatenation. For example,
X = "12" and Y = "345" would not be distinguished from X = "123" and Y = "45". To preserve that
information, each component should be preceded by an encoding of its length or should end
with some sequence that cannot occur within the component, or some similar technique should
be used.

For FNV, the same hash results if 1) X, Y, and Z are actually concatenated and the FNV hash is
applied to the resulting string or 2) FNV is calculated on an initial substring and the result is
used as the offset_basis when calculating the FNV hash of the remainder of the string. This can
be done several times. Assuming that FNVoffset_basis (v, w) is the FNV of w using v as the
offset_basis, then in the example above, fnvx = FNV (X) could be calculated and then fnvxy =
FNVoffset_basis (fnvx, Y), and finally fnvxyz = FNVoffset_basis (fnvxy, Z). The resulting fnvxyz
would be the same as FNV (X | Y | Z).

This means that if you have the value of FNV (X) and you want to calculate FNV (X | Y), you do
not need to find X. You can simply calculate FNVoffset_basis (FNV (X), Y) and thereby get FNV
(X | Y).

Sometimes, such a hash needs to be repeatedly calculated; the component values vary, but some
vary more frequently than others. For example, assume that some sort of computer network
traffic flow ID, such as the IPv6 Flow Label , is to be calculated for network packets
based on the source and destination IPv6 addresses and the Traffic Class . If the Flow
Label is calculated in the originating host, the source IPv6 address would likely always be the
same or would perhaps assume one of a very small number of values. By placing this quasi-
constant IPv6 source address first in the string being FNV-hashed, FNV (IPv6source) could be
calculated and used as the offset_basis for calculating the FNV of the IPv6 destination address
and Traffic Class for each packet. As a result, the per-packet hash would be over 17 bytes rather
than over 33 bytes, saving computational resources. The source code in this document includes
functions facilitating the use of a non-standard offset_basis.

An alternative method of hashing multiple values is to concatenate the hashes of those values
and then hash the concatenation -- that is, compute something like

 hash (X | Y | Z)

[RFC6437]
[RFC8200]

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 9

This will involve more computation than simply computing the hash of the concatenation of the
values and thus, unless parallel computational resources are available, greater latency;
however, if parallel computational resources are available and the values being hashed together
are long enough to overcome any initial/final hash function overhead, which is very small for
FNV, latency can be reduced by hashing the concatenation of the hashes of the values.

For another example of a similar technique, assume a desire to use FNV-N to hash a byte string
of length L. Let B = N/8, the number of bytes of FNV-N output. If that string is divided into k
successive substrings of equal length and assuming, for simplicity, that L is an integer multiple
of k, hashing the substrings and then hashing the concatenation of their hashes will hash a total
of L + k*B bytes, clearly more than the initial string size L. However, if sufficient parallel
computational resources are available to hash all the substrings simultaneously, the elapsed
time can be changed approximately from on the order of L to on the order of L/k + k*B. For
sufficiently large L, this parallelization will reduce the elapsed time to produce the overall hash.

 hash (hash (X) | hash (Y) | hash (Z))

5. FNV Constants
The FNV Primes are as follows:

Size FNV Prime = Expression

= Decimal

= Hexadecimal

32-bit FNV_Prime = 224 + 28 + 0x93

= 16,777,619

= 0x01000193

64-bit FNV_Prime = 240 + 28 + 0xB3

= 1,099,511,628,211

= 0x00000100 000001B3

128-bit FNV_Prime = 288 + 28 + 0x3B

= 309,485,009,821,345,068,724,781,371

= 0x00000000 01000000 00000000 0000013B

256-bit FNV_Prime = 2168 + 28 + 0x63

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 10

Size FNV Prime = Expression

= Decimal

= Hexadecimal

= 374,144,419,156,711,147,060,143,317,175,368,453,031,918,731,002,211

= 0x0000000000000000 0000010000000000 0000000000000000 0000000000000163

512-bit FNV_Prime = 2344 + 28 + 0x57

= 35,835,915,874,844,867,368,919,076,489,095,108,449,946,327,955,754,392,558,399,825,615,420,
669,938,882,575,126,094,039,892,345,713,852,759

= 0x0000000000000000 0000000000000000 0000000001000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000157

1024-bit FNV_Prime = 2680 + 28 + 0x8D

= 5,016,456,510,113,118,655,434,598,811,035,278,955,030,765,345,404,790,744,303,017,523,831,
112,055,108,147,451,509,157,692,220,295,382,716,162,651,878,526,895,249,385,292,291,816,524,
375,083,746,691,371,804,094,271,873,160,484,737,966,720,260,389,217,684,476,157,468,082,573

= 0x0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000010000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 000000000000018D

Table 1

The FNV offset_basis values are as follows:

Size offset_basis

= Decimal

= Hexadecimal

32-bit offset_basis

= 2,166,136,261

= 0x811C9DC5

64-bit offset_basis

= 14,695,981,039,346,656,037

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 11

Size offset_basis

= Decimal

= Hexadecimal

= 0xCBF29CE4 84222325

128-bit offset_basis

= 144,066,263,297,769,815,596,495,629,667,062,367,629

= 0x6C62272E 07BB0142 62B82175 6295C58D

256-bit offset_basis

= 100,029,257,958,052,580,907,070,968,620,625,704,837,092,796,014,241,193,945,225,284,501,
741,471,925,557

= 0xDD268DBCAAC55036 2D98C384C4E576CC C8B1536847B6BBB3 1023B4C8CAEE0535

512-bit offset_basis

= 9,659,303,129,496,669,498,009,435,400,716,310,466,090,418,745,672,637,896,108,374,329,434,
462,657,994,582,932,197,716,438,449,813,051,892,206,539,805,784,495,328,239,340,083,876,191,

928,701,583,869,517,785

= 0xB86DB0B1171F4416 DCA1E50F309990AC AC87D059C9000000 0000000000000D21
E948F68A34C192F6 2EA79BC942DBE7CE 182036415F56E34B AC982AAC4AFE9FD9

1024-bit offset_basis

= 14,197,795,064,947,621,068,722,070,641,403,218,320,880,622,795,441,933,960,878,474,914,617,
582,723,252,296,732,303,717,722,150,864,096,521,202,355,549,365,628,174,669,108,571,814,760,
471,015,076,148,029,755,969,804,077,320,157,692,458,563,003,215,304,957,150,157,403,644,460,
363,550,505,412,711,285,966,361,610,267,868,082,893,823,963,790,439,336,411,086,884,584,107,

735,010,676,915

= 0x0000000000000000 005F7A76758ECC4D 32E56D5A591028B7 4B29FC4223FDADA1
6C3BF34EDA3674DA 9A21D90000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 000000000004C6D7
EB6E73802734510A 555F256CC005AE55 6BDE8CC9C6A93B21 AFF4B16C71EE90B3

Table 2

6. Security Considerations
No assertion of suitability for cryptographic applications is made for the FNV hash algorithms.

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 12

The use of a cryptographic hash function should be considered when active adversaries are a
factor (see Section 1.2).

6.1. Inducing Collisions
An attacker could attempt to induce collisions to cause denial or degradation of service. Consider
the following simplified example: A hash table of n buckets is being maintained with the bucket
used by some item i determined by

and with a linked list out of each bucket of the items that all hash to that bucket. Such an
arrangement might be used for the symbol table in a compiler or for some of the routing
information (i.e., a RIB (Routing Information Base)) in a router. A large number of items hashing
to the same bucket will then likely result in much slower times to retrieve from or update the
information stored through the table for one of those items. Typically, an attacker could arrange
for the number of distinct items being hashed to be orders of magnitude larger than n, even if n
was tens or hundreds of thousands, so collisions are guaranteed to occur in this example
regardless of the nature of the hash function.

There are a number of different circumstances that might surround this example, of which the
following three are illustrative:

If a hash function is being used in an exactly known way for the above scenario, including a
known offset_basis such as a standard offset_basis specified in this document, then an
adversary could test items offline and generate an arbitrary set of items whose hash table
indexes would collide. Under these circumstances, the adversary would not have to conduct
any trials of actually submitting items and would not have to measure performance to find
collisions. Submitting such a set of items would then degrade or deny service. For FNV, the
use of an offset_basis not known by the adversary is adequate to defeat this case.
If the adversary cannot detect when collisions occur or when service is degraded, then it is
sufficient for the adversary to be unable to predict the hash outcomes. For FNV, the use of an
offset_basis not known by the adversary may be adequate to defend against this case.
If the adversary can detect the degradation in service caused by collisions in the above
example and can feed large numbers of variable items to the process, then they can collect
sets of items that appear to collide. Even if there are limits to the number of items that can
be submitted, if there can be multiple trials, the adversary can collect multiple sets of items
that collide within each set or one growing set of items, all of which collide. Then, by
submitting such items, the adversary can degrade or deny service. That is true regardless of
whether the hash function used is a non-cryptographic hash function such as FNV or a
cryptographic hash function such as those specified in or . One defense
in this case is to detect when a large number of collisions are happening (which could, but
would be unlikely to, occur by chance) and, when that is detected, rehash the items with
some change to the hash algorithm and use the changed hash algorithm for subsequent
items -- for example, if FNV is being used, to rehash with a different offset_basis and then

 hash(i) mod n

•

•

•

[FIPS202] [RFC6234]

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 13

7. Historical Notes
The FNV hash algorithm originated from an idea submitted as reviewer comments to the IEEE
POSIX P1003.2 committee in 1991 by and . Subsequently, during a
ballot round, proposed an enhancement to their algorithm. Some people tried
this hash and found that it worked rather well. In an email message to Landon, they named it
the "Fowler/Noll/Vo" or FNV hash from their last names in alphabetical order .

The string used to calculate the offset_basis values (see Section 2.2) was selected because the
person testing FNV with non-zero offset_basis values was looking at an email message from
Landon and was copying his standard email signature line; however, they "did not see very well"

 and copied it incorrectly. In fact, Landon uses

but, since it doesn't matter, no effort has been made to correct this.

continue using that new offset_basis. There exist commercially deployed routers that use
this technique to ameliorate excessive hash collisions in internal tables.

[IEEE] Glenn Fowler Phong Vo
Landon Curt Noll

[FNV]

[FNV]

 chongo (Landon Curt Noll) /\oo/\

8. The Source Code
The following subsections provide reference C source code and a test driver with a command
line interface for FNV-1a.

Section 8.2 provides the C header and code source files for the FNV functions. Section 8.3
provides the test driver. Section 8.4 provides a simple makefile to build the test driver or a
library file with all FNV sizes.

Alternative source code for 32- and 64-bit FNV is available at . Other alternative source
code, including in x86 assembler, is currently available at . In some cases, this further
source code has been further optimized.

8.1. Source Code Details

8.1.1. FNV Functions Available

The functions provided are listed below. The "xxx" in the function names is "32", "64", "128",
"256", "512", or "1024", depending on the length of the FNV. All of the FNV hash functions have as
their return value an integer whose meaning is specified in FNVErrorCodes.h.

Functions providing a byte vector hash are available for all lengths. For FNV-32, versions are
available that provide a 32-bit integer and are identified by replacing "xxx" with "32INT". For
example, FNV32string provides a 4-byte vector, but FNV32INTstring provides a 32-bit integer.
For FNV-64, if compiled with 64-bit integers enabled (i.e., FNV_64bitIntegers defined; see

[C]

[LCN2]
[FNV]

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 14

FNVxxxstring, FNVxxxblock, FNVxxxfile:

FNVxxxstringBasis, FNVxxxblockBasis, FNVxxxfileBasis:

FNVxxxINTstring, FNVxxxINTblock, FNVxxxINTfile:

FNVxxxINTstringBasis, FNVxxxINTblockBasis, FNVxxxINTfileBasis:

FNVxxxinit, FNVxxxinitBasis:

FNVxxxINTinitBasis:

FNVxxxblockin, FNVxxxstringin, FNVxxxfilein:

FNVxxxresult, FNVxxxINTresult:

FNVconfig.h), versions are available that provide a 64-bit integer and are identified by replacing
"xxx" with "64INT". Versions providing an integer hash will not be compatible between systems
of different endianness (see Section 2.3).

If you want to copy the source code from this document, note that it is indented by three spaces
in the ".txt" version. It may be simplest to copy from the ".html" version of this document.

These are simple functions
for directly returning the FNV hash of a zero-terminated byte string not including that zero
byte, the FNV hash of a counted block of bytes, and the FNV of a file, respectively. The
functions whose names have the "Basis" suffix take an additional parameter specifying the
offset_basis. Note that for applications of FNV-32 and of FNV-64 where integers of that size
are supported and an integer data type output is acceptable, the code is sufficiently simple
that, to maximize performance, the use of open coding or macros may be more appropriate
than calling a subroutine.

These functions and the next two sets of functions below provide facilities
for incrementally calculating FNV hashes. They all assume a data structure of type
FNVxxxcontext that holds the current state of the hash. FNVxxxinit initializes that context to
the standard offset_basis. FNVxxxinitBasis takes an offset_basis value as a parameter and
may be useful for hashing concatenations, as described in Section 4, as well as for simply
using a non-standard offset_basis.

These functions hash a sequence of bytes into
an FNVxxxcontext that was originally initialized by FNVxxxinit or FNVxxxinitBasis.
FNVxxxblockin hashes in a counted block of bytes. FNVxxxstringin hashes in a zero-
terminated byte string not including the final zero byte. FNVxxxfilein hashes in the contents
of a file.

This function extracts the final FNV hash result from an
FNVxxxcontext.

8.1.2. Source Files and 64-Bit Support

Code optimized for 64-bit integer support -- that is, support of 64-bit integer addition and 32-bit x
32-bit multiplication producing a 64-bit product -- is provided based on whether or not the
FNV_64bitIntegers symbol is defined. By default, this is set in FNVconfig.h based on the
compilation target; however, this can be overridden by editing that file or by defining certain
symbols in, for example, a command line invoking a compilation.

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 15

For support of a single FNV size, say "xxx" (e.g., FNV64), in an application, the application itself
needs to include the appropriate FNVxxx.h file (which will, in turn, include the FNVconfig.h and
FNVErrorCodes.h files). To build the particular FNVxxx code itself, compile the FNVxxx.c file
with the following files available to the compiler: FNVconfig.h, fnv-private.h, FNVErrorCodes.h,
and FNVxxx.h. (See Section 8.2.) Since the test program provided in Section 8.3 uses all sizes of
FNV, all the .c and .h files are needed to compile it.

-a

-h

-v

-t nnn

-u nnn

-f filename

token

8.1.3. Command Line Interface

The test program provided in Section 8.3 has a command line interface. By default, with no
command line arguments, it runs tests of all FNV lengths. Command line options are as follows:

The option letters have the following meanings:

Run tests for all lengths.

Print a help message about the command line.

Complement the Verbose flag, which is initially off. When the flag is on, the program prints
more information during tests, etc.

Run tests for length nnn, which must be one of 32, 64, 128, 256, 512, or 1024.

Use hash size nnn, which must be one of 32, 64, 128, 256, 512, or 1024. This is useful for
setting the hash size for use by the -f option or in hashing tokens on the command line after
the options.

Hash the contents of the file with name filename. The hash size must have been set
by a prior -t or -u option in the command line.

Tokens appearing on the command line after the options are hashed with the current
hash size, which must have been set by a prior -t or -u option in the command line.

For example,

runs tests for FNV128, then prints a command line help message, then turns on Verbose, then
runs the tests for FNV64, then turns off Verbose, then sets the hash size to 256, then hashes the
contents of file foobar.txt, then hashes the token "RabOof", and finally hashes the token "1234".

 FNVhash [-a] [-h] [-t nnn] [-u nnn] [-v] [-f filename] [token ...]

 FNVhash -t 128 -h -v -t 64 -v -u 256 -f foobar.txt RabOof 1234

8.2. FNV-1a C Code
This section provides the direct FNV-1a function for each of the lengths for which it is specified
in this document.

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 16

The following is a configuration header to set whether 64-bit integers are supported and
establish an enum used for return values.

<CODE BEGINS> file "FNVconfig.h"

//************************ FNVconfig.h **************************//
//**************** See RFC 9923 for details. ********************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

#ifndef _FNVconfig_H_
#define _FNVconfig_H_

/*
 * Description:
 * This file provides configuration ifdefs for the
 * FNV-1a non-cryptographic hash algorithms. */

/* FNV_64bitIntegers - Define this if your system supports
 * 64-bit arithmetic including 32-bit x 32-bit
 * multiplication producing a 64-bit product. If
 * undefined, it will be assumed that 32-bit arithmetic
 * is supported including 16-bit x 16-bit multiplication
 * producing a 32-bit result.
 */

#include <stdint.h>

/* Check if 64-bit integers are supported in the target */

#ifdef UINT64_MAX
 #define FNV_64bitIntegers
#else
 #undef FNV_64bitIntegers
#endif

/* The following allows overriding the
 * above configuration setting.
 */

#ifdef FNV_TEST_PROGRAM
ifdef TEST_FNV_64bitIntegers
ifndef FNV_64bitIntegers
define FNV_64bitIntegers
endif
else
undef FNV_64bitIntegers
endif
ifndef FNV_64bitIntegers /* causes an error if uint64_t is used */
undef uint64_t
define uint64_t no_64_bit_integers
endif
#endif

#endif /* _FNVconfig_H_ */

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 17

The following code is a simple header file to define the return value error codes for the FNV
routines.

The following code is a private header file that is used by all the FNV functions further below
and that states the terms for use and redistribution of all of this source code.

<CODE ENDS>

<CODE BEGINS> file "FNVErrorCodes.h"

//********************** FNVErrorCodes.h **************************//
//**************** See RFC 9923 for details. **********************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

#ifndef _FNV_ErrCodes_
#define _FNV_ErrCodes_
//**//
//
// All FNV functions, except the FNVxxxfile functions,
// return an integer as follows:
// 0 -> success
// >0 -> error as listed below
//
enum { /* success and errors */
 fnvSuccess = 0,
 fnvNull, // 1 Null pointer parameter
 fnvStateError, // 2 called Input after Result or before Init
 fnvBadParam // 3 passed a bad parameter
};
#endif /* _FNV_ErrCodes_ */

<CODE ENDS>

<CODE BEGINS> file "fnv-private.h"

//************************ fnv-private.h **************************//
//****************** See RFC 9923 for details. ********************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following
 * disclaimer in the documentation and/or other materials provided

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 18

 * with the distribution.
 *
 * * Neither the name of Internet Society, IETF or IETF Trust, nor
 * the names of specific contributors, may be used to endorse or
 * promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#ifndef _FNV_PRIVATE_H_
#define _FNV_PRIVATE_H_

/*
 * Six FNV-1a hashes are defined with these sizes:
 * FNV32 32 bits, 4 bytes
 * FNV64 64 bits, 8 bytes
 * FNV128 128 bits, 16 bytes
 * FNV256 256 bits, 32 bytes
 * FNV512 512 bits, 64 bytes
 * FNV1024 1024 bits, 128 bytes
 */

/* Private stuff used by this implementation of the FNV
 * (Fowler/Noll/Vo) non-cryptographic hash function FNV-1a.
 * External callers don't need to know any of this. */

enum { /* State value bases for context->Computed */
 FNVinited = 22,
 FNVcomputed = 76,
 FNVemptied = 220,
 FNVclobber = 122 /* known bad value for testing */
};

/* Deltas to assure distinct state values for different lengths */
enum {
 FNV32state = 1,
 FNV64state = 3,
 FNV128state = 5,
 FNV256state = 7,
 FNV512state = 11,
 FNV1024state = 13
};

#endif /* _FNV_PRIVATE_H_ */

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 19

8.2.1. FNV32 Code

The following code is the header and C source for 32-bit FNV-1a providing a 32-bit integer or 4-
byte vector hash.

<CODE ENDS>

<CODE BEGINS> file "FNV32.h"

//*************************** FNV32.h ****************************//
//****************** See RFC 9923 for details. *******************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

#ifndef _FNV32_H_
#define _FNV32_H_

/*
 * Description:
 * This file provides headers for the 32-bit version of
 * the FNV-1a non-cryptographic hash algorithm.
 */

#include "FNVconfig.h"
#include "FNVErrorCodes.h"

#include <stdint.h>
#define FNV32size (32/8)
#define FNV32basis 0x811C9DC5

/* If you do not have the ISO standard stdint.h header file, then
 * you must typedef the following types:
 *
 * type meaning
 * uint32_t unsigned 32-bit integer
 * uint8_t unsigned 8-bit integer (i.e., unsigned char)
 */

/*
 * This structure holds context information for an FNV32 hash
 */
typedef struct FNV32context_s {
 int Computed; /* state */
 uint32_t Hash;
} FNV32context;

/* Function Prototypes:
 *
 * FNV32string: hash a zero-terminated string not including
 * the terminating zero
 * FNV32stringBasis: also takes an offset_basis parameter
 *
 * FNV32block: hash a byte vector of a specified length

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 20

 * FNV32blockBasis: also takes an offset_basis parameter
 *
 * FNV32file: hash the contents of a file
 * FNV32fileBasis: also takes an offset_basis parameter
 *
 * FNV32init: initializes an FNV32 context
 * FNV32initBasis: initializes an FNV32 context with a
 * provided 4-byte vector basis
 * FNV32blockin: hash in a byte vector of a specified length
 * FNV32stringin: hash in a zero-terminated string not
 * including the terminating zero
 * FNV32filein: hash in the contents of a file
 * FNV32result: returns the hash value
 *
 * Hash is returned as a 4-byte vector by the functions above,
 * and the following return a 32-bit unsigned integer:
 *
 * FNV32INTstring: hash a zero-terminated string not including
 * the terminating zero
 * FNV32INTstringBasis: also takes an offset_basis parameter
 *
 * FNV32INTblock: hash a byte vector of a specified length
 * FNV32INTblockBasis: also takes an offset_basis parameter
 *
 * FNV32INTfile: hash the contents of a file
 * FNV32INTfileBasis: also takes an offset_basis parameter
 *
 * FNV32INTinitBasis: initializes an FNV32 context with a
 * provided 32-bit integer basis
 * FNV32INTresult: returns the hash value
 */

#ifdef __cplusplus
extern "C" {
#endif

/* FNV32 */
extern int FNV32INTstring (const char *in,
 uint32_t * const out);
extern int FNV32INTstringBasis (const char *in,
 uint32_t * const out,
 uint32_t basis);
extern int FNV32string (const char *in,
 uint8_t out[FNV32size]);
extern int FNV32stringBasis (const char *in,
 uint8_t out[FNV32size],
 const uint8_t basis[FNV32size]);
extern int FNV32INTblock (const void *vin,
 long int length,
 uint32_t * const out);
extern int FNV32INTblockBasis (const void *vin,
 long int length,
 uint32_t * const out,
 uint32_t basis);
extern int FNV32block (const void *vin,
 long int length,
 uint8_t out[FNV32size]);
extern int FNV32blockBasis (const void *vin,

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 21

 long int length,
 uint8_t out[FNV32size],
 const uint8_t basis[FNV32size]);
extern int FNV32INTfile (const char *fname,
 uint32_t * const out);
extern int FNV32INTfileBasis (const char *fname,
 uint32_t * const out,
 uint32_t basis);
extern int FNV32file (const char *fname,
 uint8_t out[FNV32size]);
extern int FNV32fileBasis (const char *fname,
 uint8_t out[FNV32size],
 const uint8_t basis[FNV32size]);
extern int FNV32init (FNV32context * const);
extern int FNV32INTinitBasis (FNV32context * const,
 uint32_t basis);
extern int FNV32initBasis (FNV32context * const,
 const uint8_t basis[FNV32size]);
extern int FNV32blockin (FNV32context * const,
 const void *vin,
 long int length);
extern int FNV32stringin (FNV32context * const,
 const char *in);
extern int FNV32filein (FNV32context * const,
 const char *fname);
extern int FNV32INTresult (FNV32context * const,
 uint32_t * const out);
extern int FNV32result (FNV32context * const,
 uint8_t out[FNV32size]);

#ifdef __cplusplus
}
#endif

#endif /* _FNV32_H_ */

<CODE ENDS>

<CODE BEGINS> file "FNV32.c"

//************************** FNV32.c **************************//
//**************** See RFC 9923 for details. ******************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

/* This code implements the FNV (Fowler/Noll/Vo) non-cryptographic
 * hash function FNV-1a for 32-bit hashes.
 */

#include <stdio.h>

#include "fnv-private.h"
#include "FNV32.h"

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 22

/* 32-bit FNV_prime = 2^24 + 2^8 + 0x93 */
#define FNV32prime 0x01000193

/* FNV32: hash a zero-terminated string not including the zero
***/
int FNV32INTstring (const char *in, uint32_t * const out) {
 return FNV32INTstringBasis (in, out, FNV32basis);
} /* end FNV32INTstring */

/* FNV32: hash a zero-terminated string not including the zero
 * with a non-standard basis
***/
int FNV32INTstringBasis (const char *in,
 uint32_t * const out,
 uint32_t basis) {
 uint8_t ch;

 if (!in || !out)
 return fnvNull; /* Null input pointer */
 while ((ch = *in++))
 basis = FNV32prime * (basis ^ ch);
 *out = basis;
 return fnvSuccess;
} /* end FNV32INTstringBasis */

/* FNV32: hash a zero-terminated string not including the zero
***/
int FNV32string (const char *in, uint8_t out[FNV32size]) {
 uint32_t temp;
 uint8_t ch;

 if (!in || !out)
 return fnvNull; /* Null input pointer */
 temp = FNV32basis;
 while ((ch = *in++))
 temp = FNV32prime * (temp ^ ch);
 for (int i=0; i<FNV32size; ++i)
 out[i] = ((uint8_t *)&temp)[i];
 return fnvSuccess;
} /* end FNV32string */

/* FNV32: hash a zero-terminated string not including the zero
 * with a non-standard basis
***/
int FNV32stringBasis (const char *in,
 uint8_t out[FNV32size],
 const uint8_t basis[FNV32size]) {
 uint32_t temp;
 int i;
 uint8_t ch;

 if (!in || !out || !basis)
 return fnvNull; /* Null input pointer */
 temp = basis[0]+(basis[1]<<8)+(basis[2]<<16)+(basis[3]<<24);
 while ((ch = *in++))
 temp = FNV32prime * (temp ^ ch);
 out[0] = temp & 0xFF;
 for (i=1; i<FNV32size; ++i) {

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 23

 temp >>= 8;
 out[i] = temp & 0xFF;
 }
 return fnvSuccess;
} /* end FNV32stringBasis */

/* FNV32: hash a counted block returning an integer
 **/
int FNV32INTblock (const void *vin,
 long int length,
 uint32_t * const out) {
 return FNV32INTblockBasis (vin, length, out, FNV32basis);
} /* end FNV32INTblock */

/* FNV32: hash a counted block with a non-standard basis
 **/
int FNV32INTblockBasis (const void *vin,
 long int length,
 uint32_t * const out,
 uint32_t basis) {
 const uint8_t *in = (const uint8_t*)vin;
 uint32_t temp;

 if (!in || !out)
 return fnvNull; /* Null input pointer */
 if (length < 0)
 return fnvBadParam;
 for (temp = basis; length > 0; length--)
 temp = FNV32prime * (temp ^ *in++);
 *out = temp;
 return fnvSuccess;
} /* end FNV32INTblockBasis */

/* FNV32: hash a counted block returning a 4-byte vector
 **/
int FNV32block (const void *vin,
 long int length,
 uint8_t out[FNV32size]) {
 const uint8_t *in = (const uint8_t*)vin;
 uint32_t temp;

 if (!in || !out)
 return fnvNull; /* Null input pointer */
 if (length < 0)
 return fnvBadParam;
 for (temp = FNV32basis; length > 0; length--)
 temp = FNV32prime * (temp ^ *in++);
 for (int i=0; i<FNV32size; ++i)
 out[i] = ((uint8_t *)&temp)[i];
 return fnvSuccess;
} /* end FNV32block */

/* FNV32: hash a counted block with a non-standard basis
 **/
int FNV32blockBasis (const void *vin,
 long int length,
 uint8_t out[FNV32size],
 const uint8_t basis[FNV32size]) {

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 24

 const uint8_t *in = (const uint8_t*)vin;
 uint32_t temp;

 if (!in || !out || !basis)
 return fnvNull; /* Null input pointer */
 if (length < 0)
 return fnvBadParam;
 temp = basis[0]+(basis[1]<<8)+(basis[2]<<16)+(basis[3]<<24);
 for (; length > 0; length--)
 temp = FNV32prime * (temp ^ *in++);
 for (int i=0; i<FNV32size; ++i)
 out[i] = ((uint8_t *)&temp)[i];
 return fnvSuccess;
} /* end FNV32blockBasis */

/* hash the contents of a file, return 32-bit integer
 **/
int FNV32INTfile (const char *fname,
 uint32_t * const out) {
 return FNV32INTfileBasis (fname, out, FNV32basis);
} /* end FNV32INTfile */

/* hash the contents of a file, return 32-bit integer
 * with a non-standard basis
 **/
int FNV32INTfileBasis (const char *fname,
 uint32_t * const out,
 uint32_t basis) {
 FNV32context e32Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV32INTinitBasis (&e32Context, basis)))
 return error;
 if ((error = FNV32filein (&e32Context, fname)))
 return error;
 return FNV32INTresult (&e32Context, out);
} /* end FNV32INTfileBasis */

/* hash the contents of a file, return 4-byte vector
 **/
int FNV32file (const char *fname,
 uint8_t out[FNV32size]) {
 FNV32context e32Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV32init (&e32Context)))
 return error;
 if ((error = FNV32filein (&e32Context, fname)))
 return error;
 return FNV32result (&e32Context, out);
} /* end FNV32file */

/* hash the contents of a file, return 4-byte vector
 * with a non-standard basis

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 25

 **/
int FNV32fileBasis (const char *fname,
 uint8_t out[FNV32size],
 const uint8_t basis[FNV32size]) {
 FNV32context e32Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV32initBasis (&e32Context, basis)))
 return error;
 if ((error = FNV32filein (&e32Context, fname)))
 return error;
 return FNV32result (&e32Context, out);
} /* end FNV32fileBasis */

//**
// Set of init, input, and output functions below
// to incrementally compute FNV32
//**

/* initialize context
 ***/
int FNV32init (FNV32context * const ctx) {
 return FNV32INTinitBasis (ctx, FNV32basis);
} /* end FNV32init */

/* initialize context with a provided 32-bit integer basis
 ***/
int FNV32INTinitBasis (FNV32context * const ctx,
 uint32_t basis) {
 if (!ctx)
 return fnvNull;
 ctx->Hash = basis;
 ctx->Computed = FNVinited+FNV32state;
 return fnvSuccess;
} /* end FNV32INTinitBasis */

/* initialize context with a provided 4-byte vector basis
 ***/
int FNV32initBasis (FNV32context * const ctx,
 const uint8_t basis[FNV32size]) {
 if (!ctx || !basis)
 return fnvNull;
 ctx->Hash =
 basis[0]+(basis[1]<<8)+(basis[2]<<16)+(basis[3]<<24);
 ctx->Computed = FNVinited+FNV32state;
 return fnvSuccess;
} /* end FNV32initBasis */

/* hash in a counted block
 ***/
int FNV32blockin (FNV32context * const ctx,
 const void *vin,
 long int length) {
 const uint8_t *in = (const uint8_t*)vin;
 uint32_t temp;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 26

 if (!ctx || !in)
 return fnvNull;
 if (length < 0)
 return fnvBadParam;
 switch (ctx->Computed) {
 case FNVinited+FNV32state:
 ctx->Computed = FNVcomputed+FNV32state;
 break;
 case FNVcomputed+FNV32state:
 break;
 default:
 return fnvStateError;
 }
 for (temp = ctx->Hash; length > 0; length--)
 temp = FNV32prime * (temp ^ *in++);
 ctx->Hash = temp;
 return fnvSuccess;
} /* end FNV32blockin */

/* hash in a zero-terminated string not including the zero
 ***/
int FNV32stringin (FNV32context * const ctx, const char *in) {
 uint32_t temp;
 uint8_t ch;

 if (!ctx || !in)
 return fnvNull;
 switch (ctx->Computed) {
 case FNVinited+FNV32state:
 ctx->Computed = FNVcomputed+FNV32state;
 break;
 case FNVcomputed+FNV32state:
 break;
 default:
 return fnvStateError;
 }
 temp = ctx->Hash;
 while ((ch = (uint8_t)*in++))
 temp = FNV32prime * (temp ^ ch);
 ctx->Hash = temp;
 return fnvSuccess;
} /* end FNV32stringin */

/* hash in the contents of a file
 **/
int FNV32filein (FNV32context * const e32Context,
 const char *fname) {
 FILE *fp;
 long int i;
 char buf[1024];
 int error;

 if (!e32Context || !fname)
 return fnvNull;
 switch (e32Context->Computed) {
 case FNVinited+FNV32state:
 e32Context->Computed = FNVcomputed+FNV32state;
 break;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 27

8.2.2. FNV64 Code

The following code is the header and C source for 64-bit FNV-1a providing an 8-byte vector or,
optionally, if 64-bit integers are supported, a 64-bit integer hash.

 case FNVcomputed+FNV32state:
 break;
 default:
 return fnvStateError;
 }
 if ((fp = fopen (fname, "rb")) == NULL)
 return fnvBadParam;
 if ((error = FNV32blockin (e32Context, "", 0))) {
 fclose(fp);
 return error;
 }
 while ((i = fread (buf, 1, sizeof(buf), fp)) > 0)
 if ((error = FNV32blockin (e32Context, buf, i))) {
 fclose(fp);
 return error;
 }
 error = ferror(fp);
 fclose(fp);
 if (error) return fnvBadParam;
 return fnvSuccess;
} /* end FNV32filein */

/* return hash as an integer
 ***/
int FNV32INTresult (FNV32context * const ctx,
 uint32_t * const out) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV32state)
 return fnvStateError;
 ctx->Computed = FNVemptied+FNV32state;
 *out = ctx->Hash;
 ctx->Hash = 0;
 return fnvSuccess;
} /* end FNV32INTresult */

/* return hash as a 4-byte vector
 ***/
int FNV32result (FNV32context * const ctx,
 uint8_t out[FNV32size]) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV32state)
 return fnvStateError;
 ctx->Computed = FNVemptied+FNV32state;
 for (int i=0; i<FNV32size; ++i)
 out[i] = ((uint8_t *)&ctx->Hash)[i];
 ctx->Hash = 0;
 return fnvSuccess;
} /* end FNV32result */

<CODE ENDS>

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 28

<CODE BEGINS> file "FNV64.h"

//*************************** FNV64.h ****************************//
//***************** See RFC 9923 for details. ********************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

#ifndef _FNV64_H_
#define _FNV64_H_

/*
 * Description:
 * This file provides headers for the 64-bit version of
 * the FNV-1a non-cryptographic hash algorithm.
 */

#include "FNVconfig.h"
#include "FNVErrorCodes.h"

#include <stdint.h>
#define FNV64size (64/8)
#ifdef FNV_64bitIntegers
#define FNV64basis 0xCBF29CE484222325
#endif

/* If you do not have the ISO standard stdint.h header file, then
 * you must typedef the following types:
 *
 * type meaning
 * uint64_t unsigned 64-bit integer (ifdef FNV_64bitIntegers)
 * uint32_t unsigned 32-bit integer
 * uint16_t unsigned 16-bit integer
 * uint8_t unsigned 8-bit integer (i.e., unsigned char)
 */

/*
 * This structure holds context information for an FNV64 hash
 */
#ifdef FNV_64bitIntegers
 /* version if 64-bit integers supported */
typedef struct FNV64context_s {
 int Computed; /* state */
 uint64_t Hash;
} FNV64context;

#else
 /* version if 64-bit integers NOT supported */
typedef struct FNV64context_s {
 int Computed; /* state */
 uint16_t Hash[FNV64size/2];
} FNV64context;

#endif /* FNV_64bitIntegers */

/* Function Prototypes:

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 29

 *
 * FNV64string: hash a zero-terminated string not including
 * the terminating zero
 * FNV64stringBasis: also takes an offset_basis parameter
 *
 * FNV64block: hash a byte vector of a specified length
 * FNV64blockBasis: also takes an offset_basis parameter
 *
 * FNV64file: hash the contents of a file
 * FNV64fileBasis: also takes an offset_basis parameter
 *
 * FNV64init: initializes an FNV64 context
 * FNV64initBasis: initializes an FNV64 context with a
 * provided 8-byte vector basis
 * FNV64blockin: hash in a byte vector of a specified length
 * FNV64stringin: hash in a zero-terminated string not
 * including the terminating zero
 * FNV64filein: hash in the contents of a file
 * FNV64result: returns the hash value
 *
 * Hash is returned as an 8-byte vector by the functions above.
 * If 64-bit integers are supported, the following return
 * a 64-bit integer.
 *
 * FNV64INTstring: hash a zero-terminated string not including
 * the terminating zero
 * FNV64INTstringBasis: also takes an offset_basis parameter
 *
 * FNV64INTblock: hash a byte vector of a specified length
 * FNV64INTblockBasis: also takes an offset_basis parameter
 *
 * FNV64INTfile: hash the contents of a file
 * FNV64INTfileBasis: also takes an offset_basis parameter
 *
 * FNV64INTinitBasis: initializes an FNV64 context with a
 * provided 64-bit integer basis
 * FNV64INTresult: returns the hash value
 */

#ifdef __cplusplus
extern "C" {
#endif

/* FNV64 */
extern int FNV64string (const char *in,
 uint8_t out[FNV64size]);
extern int FNV64stringBasis (const char *in,
 uint8_t out[FNV64size],
 const uint8_t basis[FNV64size]);
extern int FNV64block (const void *vin,
 long int length,
 uint8_t out[FNV64size]);
extern int FNV64blockBasis (const void *vin,
 long int length,
 uint8_t out[FNV64size],
 const uint8_t basis[FNV64size]);
extern int FNV64file (const char * fname,
 uint8_t out[FNV64size]);

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 30

extern int FNV64fileBasis (const char * fname,
 uint8_t out[FNV64size],
 const uint8_t basis[FNV64size]);
extern int FNV64init (FNV64context * const);
extern int FNV64initBasis (FNV64context * const,
 const uint8_t basis[FNV64size]);
extern int FNV64blockin (FNV64context * const,
 const void * vin,
 long int length);
extern int FNV64stringin (FNV64context * const,
 const char * in);
extern int FNV64filein (FNV64context * const,
 const char *fname);
extern int FNV64result (FNV64context * const,
 uint8_t out[FNV64size]);

#ifdef FNV_64bitIntegers
 extern int FNV64INTstring (const char *in,
 uint64_t * const out);
 extern int FNV64INTstringBasis (const char *in,
 uint64_t * const out,
 uint64_t basis);
 extern int FNV64INTblock (const void *vin,
 long int length,
 uint64_t * const out);
 extern int FNV64INTblockBasis (const void *vin,
 long int length,
 uint64_t * const out,
 uint64_t basis);
 extern int FNV64INTfile (const char * fname,
 uint64_t * const out);
 extern int FNV64INTfileBasis (const char * fname,
 uint64_t * const out,
 uint64_t basis);
 extern int FNV64INTinitBasis (FNV64context * const,
 uint64_t basis);
 extern int FNV64INTresult (FNV64context * const,
 uint64_t * const out);
#endif /* FNV_64bitIntegers */

#ifdef __cplusplus
}
#endif

#endif /* _FNV64_H_ */

<CODE ENDS>

<CODE BEGINS> file "FNV64.c"

//*************************** FNV64.c ****************************//
//****************** See RFC 9923 for details. *******************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 31

/* This file implements the FNV (Fowler/Noll/Vo) non-cryptographic
 * hash function FNV-1a for 64-bit hashes.
 */

#include <stdio.h>

#include "FNVconfig.h"
#include "fnv-private.h"
#include "FNV64.h"

//***
// CODE THAT IS THE SAME FOR 32-BIT and 64-BIT ARITHMETIC
//***

/* hash the contents of a file, return byte vector
 **/
int FNV64file (const char *fname,
 uint8_t out[FNV64size]) {
 FNV64context e64Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV64init (&e64Context)))
 return error;
 if ((error = FNV64filein (&e64Context, fname)))
 return error;
 return FNV64result (&e64Context, out);
} /* end FNV64file */

/* hash the contents of a file, return 64-bit integer
 * with a non-standard basis
 **/
int FNV64fileBasis (const char *fname,
 uint8_t out[FNV64size],
 const uint8_t basis[FNV64size]) {
 FNV64context e64Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV64initBasis (&e64Context, basis)))
 return error;
 if ((error = FNV64filein (&e64Context, fname)))
 return error;
 return FNV64result (&e64Context, out);
} /* end FNV64fileBasis */

/* hash in the contents of a file
 **/
int FNV64filein (FNV64context * const e64Context,
 const char *fname) {
 FILE *fp;
 long int i;
 char buf[1024];
 int error;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 32

 if (!e64Context || !fname)
 return fnvNull;
 switch (e64Context->Computed) {
 case FNVinited+FNV64state:
 e64Context->Computed = FNVcomputed+FNV64state;
 break;
 case FNVcomputed+FNV64state:
 break;
 default:
 return fnvStateError;
 }
 if ((fp = fopen (fname, "rb")) == NULL)
 return fnvBadParam;
 if ((error = FNV64blockin (e64Context, "", 0))) {
 fclose(fp);
 return error;
 }
 while ((i = fread (buf, 1, sizeof(buf), fp)) > 0)
 if ((error = FNV64blockin (e64Context, buf, i))) {
 fclose(fp);
 return error;
 }
 error = ferror(fp);
 fclose(fp);
 if (error)
 return fnvBadParam;
 return fnvSuccess;
}

//***
// START VERSION FOR WHEN YOU HAVE 64-BIT ARITHMETIC
//***
#ifdef FNV_64bitIntegers

/* 64-bit FNV_prime = 2^40 + 2^8 + 0xb3 */
#define FNV64prime 0x00000100000001B3

/* FNV64: hash a zero-terminated string not including the zero
 * to a 64-bit integer (64-bit)
 **/
int FNV64INTstring (const char *in, uint64_t * const out) {
 return FNV64INTstringBasis (in, out, FNV64basis);
} /* end FNV64INTstring */

/* FNV64: hash a zero-terminated string not including the zero
 * to a 64-bit integer (64-bit) with a non-standard basis
 **/
int FNV64INTstringBasis (const char *in,
 uint64_t * const out,
 uint64_t basis) {
 uint64_t temp;
 uint8_t ch;

 if (!in || !out)
 return fnvNull; /* Null input pointer */
 temp = basis;
 while ((ch = *in++))
 temp = FNV64prime * (temp ^ ch);

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 33

 *out = temp;
 return fnvSuccess;
} /* end FNV64INTstringBasis */

/* FNV64: hash a zero-terminated string to a 64-bit integer
 * to a byte vector (64-bit)
 **/
int FNV64string (const char *in, uint8_t out[FNV64size]) {
 uint64_t temp;
 uint8_t ch;

 if (!in || !out)
 return fnvNull; /* Null input pointer */
 temp = FNV64basis;
 while ((ch = *in++))
 temp = FNV64prime * (temp ^ ch);
 for (int i=0; i<FNV64size; ++i)
 out[i] = ((uint8_t *)&temp)[i];
 return fnvSuccess;
} /* end FNV64string */

/* FNV64: hash a zero-terminated string to a 64-bit integer
 * to a byte vector (64-bit) with a non-standard basis
 **/
int FNV64stringBasis (const char *in,
 uint8_t out[FNV64size],
 const uint8_t basis[FNV64size]) {
 uint64_t temp;
 int i;
 uint8_t ch;

 if (!in || !out || !basis)
 return fnvNull; /* Null input pointer */
 temp = basis[7];
 for (i = FNV64size-2; i>=0; --i)
 temp = (temp<<8) + basis[i];
 while ((ch = *in++))
 temp = FNV64prime * (temp ^ ch);
 for (i=0; i<FNV64size; ++i)
 out[i] = ((uint8_t *)&temp)[i];
 return fnvSuccess;
} /* end FNV64stringBasis */

/* FNV64: hash a counted block to a 64-bit integer (64-bit)
 **/
int FNV64INTblock (const void *vin,
 long int length,
 uint64_t * const out) {
 return FNV64INTblockBasis (vin, length, out, FNV64basis);
} /* end FNV64INTblock */

/* FNV64: hash a counted block to a 64-bit integer (64-bit)
 * with a non-standard basis
 **/
int FNV64INTblockBasis (const void *vin,
 long int length,
 uint64_t * const out,
 uint64_t basis) {

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 34

 const uint8_t *in = (const uint8_t*)vin;
 uint64_t temp;

 if (!in || !out)
 return fnvNull;
 /* Null input pointer or null output pointer */
 if (length < 0)
 return fnvBadParam;
 for (temp = basis; length > 0; length--)
 temp = FNV64prime * (temp ^ *in++);
 *out = temp;
 return fnvSuccess;
} /* end FNV64INTblockBasis */

/* FNV64: hash a counted block to a byte vector (64-bit)
 **/
int FNV64block (const void *vin,
 long int length,
 uint8_t out[FNV64size]) {
 const uint8_t *in = (const uint8_t*)vin;
 uint64_t temp;

 if (!in || !out)
 return fnvNull;
 /* Null input pointer or null output pointer */
 if (length < 0)
 return fnvBadParam;
 for (temp = FNV64basis; length > 0; length--)
 temp = FNV64prime * (temp ^ *in++);
 for (int i=0; i<FNV64size; ++i)
 out[i] = ((uint8_t *)&temp)[i];
 return fnvSuccess;
} /* end FNV64block */

/* FNV64: hash a counted block to a byte vector (64-bit)
 * with a non-standard basis
 **/
int FNV64blockBasis (const void *vin,
 long int length,
 uint8_t out[FNV64size],
 const uint8_t basis[FNV64size]) {
 const uint8_t *in = (const uint8_t*)vin;
 uint64_t temp;
 int i;

 if (!in || !out || !basis)
 return fnvNull;
 /* Null input pointer or null output pointer */
 if (length < 0)
 return fnvBadParam;
 temp = basis[7];
 for (i = FNV64size-2; i>=0; --i)
 temp = (temp<<8) + basis[i];
 for (; length > 0; length--)
 temp = FNV64prime * (temp ^ *in++);
 for (i=0; i<FNV64size; ++i)
 out[i] = ((uint8_t *)&temp)[i];
 return fnvSuccess;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 35

} /* end FNV64blockBasis */

//***
// Set of init, input, and output functions below
// to incrementally compute FNV64
//***

/* initialize context (64-bit)
 **/
int FNV64init(FNV64context * const ctx) {
 return FNV64INTinitBasis (ctx, FNV64basis);
} /* end FNV64init */

/* initialize context with a provided 64-bit integer basis (64-bit)
 **/
int FNV64INTinitBasis(FNV64context * const ctx, uint64_t basis) {
 if (!ctx)
 return fnvNull;
 ctx->Hash = basis;
 ctx->Computed = FNVinited+FNV64state;
 return fnvSuccess;
} /* end FNV64INTinitBasis */

/* initialize context with a provided 8-byte vector basis (64-bit)
 **/
int FNV64initBasis(FNV64context * const ctx,
 const uint8_t basis[FNV64size]) {
 if (!ctx || !basis)
 return fnvNull;
 for (int i=0; i<FNV64size; ++i)
 ((uint8_t *)&ctx->Hash)[i] = basis[i];
 ctx->Computed = FNVinited+FNV64state;
 return fnvSuccess;
} /* end FNV64initBasis */

/* hash in a counted block (64-bit)
 **/
int FNV64blockin(FNV64context * const ctx,
 const void *vin,
 long int length) {
 const uint8_t *in = (const uint8_t*)vin;
 uint64_t temp;

 if (!ctx || !in)
 return fnvNull;
 if (length < 0)
 return fnvBadParam;
 switch (ctx->Computed) {
 case FNVinited+FNV64state:
 ctx->Computed = FNVcomputed+FNV64state;
 break;
 case FNVcomputed+FNV64state:
 break;
 default:
 return fnvStateError;
 }
 for (temp = ctx->Hash; length > 0; length--)
 temp = FNV64prime * (temp ^ *in++);

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 36

 ctx->Hash = temp;
 return fnvSuccess;
} /* end FNV64blockin */

/* hash in a zero-terminated string not including the zero (64-bit)
 **/
int FNV64stringin (FNV64context * const ctx, const char *in) {
 uint64_t temp;
 uint8_t ch;

 if (!ctx || !in)
 return fnvNull;
 switch (ctx->Computed) {
 case FNVinited+FNV64state:
 ctx->Computed = FNVcomputed+FNV64state;
 break;
 case FNVcomputed+FNV64state:
 break;
 default:
 return fnvStateError;
 }
 temp = ctx->Hash;
 while ((ch = (uint8_t)*in++))
 temp = FNV64prime * (temp ^ ch);
 ctx->Hash = temp;
 return fnvSuccess;
} /* end FNV64stringin */

/* return hash as 64-bit int (64-bit)
 **/
int FNV64INTresult (FNV64context * const ctx,
 uint64_t * const out) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV64state)
 return fnvStateError;
 ctx->Computed = FNVemptied+FNV64state;
 *out = ctx->Hash;
 ctx->Hash = 0;
 return fnvSuccess;
} /* end FNV64INTresult */

/* return hash as 8-byte vector (64-bit)
 **/
int FNV64result (FNV64context * const ctx,
 uint8_t out[FNV64size]) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV64state)
 return fnvStateError;
 ctx->Computed = FNVemptied+FNV64state;
 for (int i=0; i<FNV64size; ++i)
 out[i] = ((uint8_t *)&ctx->Hash)[i];
 ctx->Hash = 0;
 return fnvSuccess;
} /* end FNV64result */

/* hash the contents of a file, return 64-bit integer

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 37

 **/
int FNV64INTfile (const char *fname,
 uint64_t * const out) {
 FNV64context e64Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV64init (&e64Context)))
 return error;
 if ((error = FNV64filein (&e64Context, fname)))
 return error;
 return FNV64INTresult (&e64Context, out);
} /* end FNV64INTfile */

/* hash the contents of a file, return 64-bit integer
 * with a non-standard basis
 **/
int FNV64INTfileBasis (const char *fname,
 uint64_t * const out,
 uint64_t basis) {
 FNV64context e64Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV64INTinitBasis (&e64Context, basis)))
 return error;
 if ((error = FNV64filein (&e64Context, fname)))
 return error;
 return FNV64INTresult (&e64Context, out);
} /* end FNV64INTfileBasis */

//***
// END VERSION FOR WHEN YOU HAVE 64-BIT ARITHMETIC
//***
#else /* FNV_64bitIntegers */
//***
// START VERSION FOR WHEN YOU ONLY HAVE 32-BIT ARITHMETIC
//***

/* 64-bit FNV_prime = 2^40 + 2^8 + 0xb3 */
/* #define FNV64prime 0x00000100000001B3 */
#define FNV64primeX 0x01B3
#define FNV64shift 8

/* FNV64: hash a zero-terminated string not including the zero
 **/
int FNV64string (const char *in, uint8_t out[FNV64size]) {
 FNV64context ctx;
 int error;

 if ((error = FNV64init (&ctx)))
 return error;
 if ((error = FNV64stringin (&ctx, in)))
 return error;
 return FNV64result (&ctx, out);
} /* end FNV64string */

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 38

/* FNV64: hash a zero-terminated string not including the zero
 * with a non-standard offset_basis
 **/
int FNV64stringBasis (const char *in,
 uint8_t out[FNV64size],
 const uint8_t basis[FNV64size]) {
 FNV64context ctx;
 int error;

 if ((error = FNV64initBasis (&ctx, basis)))
 return error;
 if ((error = FNV64stringin (&ctx, in)))
 return error;
 return FNV64result (&ctx, out);
} /* end FNV64stringBasis */

/* FNV64: hash a counted block
 **/
int FNV64block (const void *vin,
 long int length,
 uint8_t out[FNV64size]) {
 FNV64context ctx;
 int error;

 if ((error = FNV64init (&ctx)))
 return error;
 if ((error = FNV64blockin (&ctx, vin, length)))
 return error;
 return FNV64result (&ctx, out);
} /* end FNV64block */

/* FNV64: hash a counted block with a non-standard offset_basis
 **/
int FNV64blockBasis (const void *vin,
 long int length,
 uint8_t out[FNV64size],
 const uint8_t basis[FNV64size]) {
 FNV64context ctx;
 int error;

 if ((error = FNV64initBasis (&ctx, basis)))
 return error;
 if ((error = FNV64blockin (&ctx, vin, length)))
 return error;
 return FNV64result (&ctx, out);
} /* end FNV64blockBasis */

//***
// Set of init, input, and output functions below
// to incrementally compute FNV64
//***

/* initialize context (32-bit)
 **/
int FNV64init (FNV64context * const ctx) {
 if (!ctx)
 return fnvNull;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 39

 ctx->Hash[0] = 0xCBF2;
 ctx->Hash[1] = 0x9CE4;
 ctx->Hash[2] = 0x8422;
 ctx->Hash[3] = 0x2325;
 ctx->Computed = FNVinited+FNV64state;
 return fnvSuccess;
} /* end FNV64init */

/* initialize context with a non-standard basis (32-bit)
 **/
int FNV64initBasis (FNV64context * const ctx,
 const uint8_t basis[FNV64size]) {
 if (!ctx || !basis)
 return fnvNull;
 for (int i=0; i < FNV64size/2; ++i) {
 uint32_t temp = *basis++;
 ctx->Hash[i] = (temp<<8) + *basis++;
 }
 ctx->Computed = FNVinited+FNV64state;
 return fnvSuccess;
} /* end FNV64initBasis */

/* hash in a counted block (32-bit)
 **/
int FNV64blockin (FNV64context * const ctx,
 const void *vin,
 long int length) {
 const uint8_t *in = (const uint8_t*)vin;
 uint32_t temp[FNV64size/2];
 uint32_t temp2[2];
 int i;

 if (!ctx || !in)
 return fnvNull;
 if (length < 0)
 return fnvBadParam;
 switch (ctx->Computed) {
 case FNVinited+FNV64state:
 ctx->Computed = FNVcomputed+FNV64state;
 break;
 case FNVcomputed+FNV64state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV64size/2; ++i)
 temp[i] = ctx->Hash[i];
 for (; length > 0; length--) {
 /* temp = FNV64prime * (temp ^ *in++); */
 temp[3] ^= *in++;
 temp2[1] = temp[3] << FNV64shift;
 temp2[0] = temp[2] << FNV64shift;
 for (i=0; i<4; ++i)
 temp[i] *= FNV64primeX;
 temp[1] += temp2[1];
 temp[0] += temp2[0];
 for (i=2; i>=0; --i) {
 temp[i] += temp[i+1] >> 16;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 40

 temp[i+1] &= 0xFFFF;
 }
 }
 for (i=0; i<FNV64size/2; ++i)
 ctx->Hash[i] = temp[i];
 return fnvSuccess;
} /* end FNV64blockin */

/* hash in a zero-terminated string not including the zero (32-bit)
 **/
int FNV64stringin (FNV64context * const ctx, const char *in) {
 uint32_t temp[FNV64size/2];
 uint32_t temp2[2];
 int i;
 uint8_t ch;

 if (!ctx || !in)
 return fnvNull;
 switch (ctx->Computed) {
 case FNVinited+FNV64state:
 ctx->Computed = FNVcomputed+FNV64state;
 break;
 case FNVcomputed+FNV64state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV64size/2; ++i)
 temp[i] = ctx->Hash[i];
 while ((ch = (uint8_t)*in++)) {
 /* temp = FNV64prime * (temp ^ ch); */
 temp[3] ^= ch;
 temp2[1] = temp[3] << FNV64shift;
 temp2[0] = temp[2] << FNV64shift;
 for (i=0; i<4; ++i)
 temp[i] *= FNV64primeX;
 temp[1] += temp2[1];
 temp[0] += temp2[0];
 for (i=2; i>=0; --i) {
 temp[i] += temp[i+1] >> 16;
 temp[i+1] &= 0xFFFF;
 }
 }
 for (i=0; i<FNV64size/2; ++i)
 ctx->Hash[i] = temp[i];
 return fnvSuccess;
} /* end FNV64stringin */

/* return hash (32-bit)
 **/
int FNV64result (FNV64context * const ctx,
 uint8_t out[FNV64size]) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV64state)
 return fnvStateError;
 for (int i=0; i<FNV64size/2; ++i) {
 out[2*i] = ctx->Hash[i] >> 8;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 41

8.2.3. FNV128 Code

The following code is the header and C source for 128-bit FNV-1a providing a byte vector hash.

 out[2*i+1] = ctx->Hash[i];
 ctx -> Hash[i] = 0;
 }
 ctx->Computed = FNVemptied+FNV64state;
 return fnvSuccess;
} /* end FNV64result */

#endif /* FNV_64bitIntegers */
//***
// END VERSION FOR WHEN YOU ONLY HAVE 32-BIT ARITHMETIC
//***

<CODE ENDS>

<CODE BEGINS> file "FNV128.h"

//************************** FNV128.h ************************//
//*************** See RFC 9923 for details. ******************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

#ifndef _FNV128_H_
#define _FNV128_H_

/*
 * Description:
 * This file provides headers for the 128-bit version of
 * the FNV-1a non-cryptographic hash algorithm.
 */

#include "FNVconfig.h"
#include "FNVErrorCodes.h"

#include <stdint.h>
#define FNV128size (128/8)

/* If you do not have the ISO standard stdint.h header file, then
 * you must typedef the following types:
 *
 * type meaning
 * uint64_t unsigned 64-bit integer (ifdef FNV_64bitIntegers)
 * uint32_t unsigned 32-bit integer
 * uint16_t unsigned 16-bit integer
 * uint8_t unsigned 8-bit integer (i.e., unsigned char)
 */

/*
 * This structure holds context information for an FNV128 hash
 */
#ifdef FNV_64bitIntegers

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 42

 /* version if 64-bit integers supported */
typedef struct FNV128context_s {
 int Computed; /* state */
 uint32_t Hash[FNV128size/4];
} FNV128context;

#else
 /* version if 64-bit integers NOT supported */
typedef struct FNV128context_s {
 int Computed; /* state */
 uint16_t Hash[FNV128size/2];
} FNV128context;

#endif /* FNV_64bitIntegers */

/* Function Prototypes:
 *
 * FNV128string: hash a zero-terminated string not including
 * the terminating zero
 * FNV128stringBasis: also takes an offset_basis parameter
 *
 * FNV128block: hash a byte vector of a specified length
 * FNV128blockBasis: also takes an offset_basis parameter
 *
 * FNV128file: hash the contents of a file
 * FNV128fileBasis: also takes an offset_basis parameter
 *
 * FNV128init: initializes an FNV128 context
 * FNV128initBasis: initializes an FNV128 context with a
 * provided 16-byte vector basis
 * FNV128blockin: hash in a byte vector of a specified length
 * FNV128stringin: hash in a zero-terminated string not
 * including the terminating zero
 * FNV128filein: hash in the contents of a file
 * FNV128result: returns the hash value
 *
 * Hash is returned as an array of 8-bit unsigned integers
 */

#ifdef __cplusplus
extern "C" {
#endif

/* FNV128 */
extern int FNV128string (const char *in,
 uint8_t out[FNV128size]);
extern int FNV128stringBasis (const char *in,
 uint8_t out[FNV128size],
 const uint8_t basis[FNV128size]);
extern int FNV128block (const void *vin,
 long int length,
 uint8_t out[FNV128size]);
extern int FNV128blockBasis (const void *vin,
 long int length,
 uint8_t out[FNV128size],
 const uint8_t basis[FNV128size]);
extern int FNV128file (const char *fname,
 uint8_t out[FNV128size]);

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 43

extern int FNV128fileBasis (const char *fname,
 uint8_t out[FNV128size],
 const uint8_t basis[FNV128size]);
extern int FNV128init (FNV128context * const);
extern int FNV128initBasis (FNV128context * const,
 const uint8_t basis[FNV128size]);
extern int FNV128blockin (FNV128context * const,
 const void *vin,
 long int length);
extern int FNV128stringin (FNV128context * const,
 const char *in);
extern int FNV128filein (FNV128context * const,
 const char *fname);
extern int FNV128result (FNV128context * const,
 uint8_t out[FNV128size]);

#ifdef __cplusplus
}
#endif

#endif /* _FNV128_H_ */

<CODE ENDS>

<CODE BEGINS> file "FNV128.c"

//**************************** FNV128.c **************************//
//******************* See RFC 9923 for details. ******************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

/* This file implements the FNV (Fowler/Noll/Vo) non-cryptographic
 * hash function FNV-1a for 128-bit hashes.
 */

#include <stdio.h>

#include "FNVconfig.h"
#include "fnv-private.h"
#include "FNV128.h"

//***
// COMMON CODE FOR 64- AND 32-BIT INTEGER MODES
//***

/* FNV128: hash a zero-terminated string not including the zero
 **/
int FNV128string (const char *in, uint8_t out[FNV128size]) {
 FNV128context ctx;
 int error;

 if ((error = FNV128init (&ctx)))
 return error;
 if ((error = FNV128stringin (&ctx, in)))

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 44

 return error;
 return FNV128result (&ctx, out);
} /* end FNV128string */

/* FNV128: hash a zero-terminated string not including the zero
 **/
int FNV128stringBasis (const char *in,
 uint8_t out[FNV128size],
 const uint8_t basis[FNV128size]) {
 FNV128context ctx;
 int error;

 if ((error = FNV128initBasis (&ctx, basis)))
 return error;
 if ((error = FNV128stringin (&ctx, in)))
 return error;
 return FNV128result (&ctx, out);
} /* end FNV128stringBasis */

/* FNV128: hash a counted block (64/32-bit)
 **/
int FNV128block (const void *vin,
 long int length,
 uint8_t out[FNV128size]) {
 FNV128context ctx;
 int error;

 if ((error = FNV128init (&ctx)))
 return error;
 if ((error = FNV128blockin (&ctx, vin, length)))
 return error;
 return FNV128result (&ctx, out);
} /* end FNV128block */

/* FNV128: hash a counted block (64/32-bit)
 **/
int FNV128blockBasis (const void *vin,
 long int length,
 uint8_t out[FNV128size],
 const uint8_t basis[FNV128size]) {
 FNV128context ctx;
 int error;

 if ((error = FNV128initBasis (&ctx, basis)))
 return error;
 if ((error = FNV128blockin (&ctx, vin, length)))
 return error;
 return FNV128result (&ctx, out);
} /* end FNV128blockBasis */

/* hash the contents of a file
 **/
int FNV128file (const char *fname,
 uint8_t out[FNV128size]) {
 FNV128context e128Context;
 int error;

 if (!out)

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 45

 return fnvNull;
 if ((error = FNV128init (&e128Context)))
 return error;
 if ((error = FNV128filein (&e128Context, fname)))
 return error;
 return FNV128result (&e128Context, out);
} /* end FNV128file */

/* hash the contents of a file with a non-standard basis
 **/
int FNV128fileBasis (const char *fname,
 uint8_t out[FNV128size],
 const uint8_t basis[FNV128size]) {
 FNV128context e128Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV128initBasis (&e128Context, basis)))
 return error;
 if ((error = FNV128filein (&e128Context, fname)))
 return error;
 return FNV128result (&e128Context, out);
} /* end FNV128fileBasis */

/* hash in the contents of a file
 **/
int FNV128filein (FNV128context * const e128Context,
 const char *fname) {
 FILE *fp;
 long int i;
 char buf[1024];
 int error;

 if (!e128Context || !fname)
 return fnvNull;
 switch (e128Context->Computed) {
 case FNVinited+FNV128state:
 e128Context->Computed = FNVcomputed+FNV128state;
 break;
 case FNVcomputed+FNV128state:
 break;
 default:
 return fnvStateError;
 }
 if ((fp = fopen (fname, "rb")) == NULL)
 return fnvBadParam;
 if ((error = FNV128blockin (e128Context, "", 0))) {
 fclose(fp);
 return error;
 }
 while ((i = fread (buf, 1, sizeof(buf), fp)) > 0)
 if ((error = FNV128blockin (e128Context, buf, i))) {
 fclose(fp);
 return error;
 }
 error = ferror(fp);
 fclose(fp);

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 46

 if (error) return fnvBadParam;
 return fnvSuccess;
} /* end FNV128filein */

//***
// START VERSION FOR WHEN YOU HAVE 64-BIT ARITHMETIC
//***
#ifdef FNV_64bitIntegers

/* 128-bit FNV_prime = 2^88 + 2^8 + 0x3b */
/* 0x00000000 01000000 00000000 0000013B */
#define FNV128primeX 0x013B
#define FNV128shift 24

//***
// Set of init, input, and output functions below
// to incrementally compute FNV128
//***/

/* initialize context (64-bit)
 **/
int FNV128init (FNV128context * const ctx) {
 const uint32_t FNV128basis[FNV128size/4] =
 { 0x6C62272E, 0x07BB0142, 0x62B82175, 0x6295C58D };

 if (!ctx)
 return fnvNull;
 for (int i=0; i<4; ++i)
 ctx->Hash[i] = FNV128basis[i];
 ctx->Computed = FNVinited+FNV128state;
 return fnvSuccess;
} /* end FNV128init */

/* initialize context with a provided 16-byte vector basis (64-bit)
 **/
int FNV128initBasis (FNV128context * const ctx,
 const uint8_t basis[FNV128size]) {
 if (!ctx || !basis)
 return fnvNull;
 for (int i=0; i < FNV128size/4; ++i) {
 uint32_t temp = *basis++<<24;
 temp += *basis++<<16;
 temp += *basis++<<8;
 ctx->Hash[i] = temp + *basis++;
 }
 ctx->Computed = FNVinited+FNV128state;
 return fnvSuccess;
} /* end FNV128initBasis */

/* hash in a counted block (64-bit)
 **/
int FNV128blockin (FNV128context * const ctx,
 const void *vin,
 long int length) {
 const uint8_t *in = (const uint8_t*)vin;
 uint64_t temp[FNV128size/4];
 uint64_t temp2[2];
 int i;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 47

 if (!ctx || !in)
 return fnvNull;
 if (length < 0)
 return fnvBadParam;
 switch (ctx->Computed) {
 case FNVinited+FNV128state:
 ctx->Computed = FNVcomputed+FNV128state;
 break;
 case FNVcomputed+FNV128state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV128size/4; ++i)
 temp[i] = ctx->Hash[i];
 for (; length > 0; length--) {
 /* temp = FNV128prime * (temp ^ *in++); */
 temp[FNV128size/4-1] ^= *in++;
 temp2[1] = temp[3] << FNV128shift;
 temp2[0] = temp[2] << FNV128shift;
 for (i=0; i < FNV128size/4; ++i)
 temp[i] *= FNV128primeX;
 temp[1] += temp2[1];
 temp[0] += temp2[0];
 for (i = 3; i > 0; --i) {
 temp[i-1] += temp[i] >> 32;
 temp[i] &= 0xFFFFFFFF;
 }
 }
 for (i=0; i<FNV128size/4; ++i)
 ctx->Hash[i] = (uint32_t)temp[i];
 return fnvSuccess;
} /* end FNV128blockin */

/* hash in a zero-terminated string not including the zero (64-bit)
 **/
int FNV128stringin (FNV128context * const ctx, const char *in) {
 uint64_t temp[FNV128size/4];
 uint64_t temp2[2];
 int i;
 uint8_t ch;

 if (!ctx || !in)
 return fnvNull;
 switch (ctx->Computed) {
 case FNVinited+FNV128state:
 ctx->Computed = FNVcomputed+FNV128state;
 break;
 case FNVcomputed+FNV128state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV128size/4; ++i)
 temp[i] = ctx->Hash[i];
 while ((ch = (uint8_t)*in++)) {
 /* temp = FNV128prime * (temp ^ ch); */

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 48

 temp[3] ^= ch;
 temp2[1] = temp[3] << FNV128shift;
 temp2[0] = temp[2] << FNV128shift;
 for (i=0; i < FNV128size/4; ++i)
 temp[i] *= FNV128primeX;
 temp[1] += temp2[1];
 temp[0] += temp2[0];
 for (i = 3; i > 0; --i) {
 temp[i-1] += temp[i] >> 32;
 temp[i] &= 0xFFFFFFFF;
 }
 }
 for (i=0; i<FNV128size/4; ++i)
 ctx->Hash[i] = (uint32_t)temp[i];
 return fnvSuccess;
} /* end FNV128stringin */

/* return hash as 16-byte vector (64-bit)
 **/
int FNV128result (FNV128context * const ctx,
 uint8_t out[FNV128size]) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV128state)
 return fnvStateError;
 for (int i=0; i<FNV128size/4; ++i) {
 out[4*i] = ctx->Hash[i] >> 24;
 out[4*i+1] = ctx->Hash[i] >> 16;
 out[4*i+2] = ctx->Hash[i] >> 8;
 out[4*i+3] = ctx->Hash[i];
 ctx -> Hash[i] = 0;
 }
 ctx->Computed = FNVemptied+FNV128state;
 return fnvSuccess;
} /* end FNV128result */

//**
// END VERSION FOR WHEN YOU HAVE 64-BIT ARITHMETIC
//**
#else /* FNV_64bitIntegers */
//**
// START VERSION FOR WHEN YOU ONLY HAVE 32-BIT ARITHMETIC
//**

/* 128-bit FNV_prime = 2^88 + 2^8 + 0x3b */
/* 0x00000000 01000000 00000000 0000013B */
#define FNV128primeX 0x013B
#define FNV128shift 8

//***
// Set of init, input, and output functions below
// to incrementally compute FNV128
//***

/* initialize context (32-bit)
 **/
int FNV128init (FNV128context * const ctx) {
 const uint16_t FNV128basis[FNV128size/2] =

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 49

 { 0x6C62, 0x272E, 0x07BB, 0x0142,
 0x62B8, 0x2175, 0x6295, 0xC58D };

 if (!ctx)
 return fnvNull;
 for (int i=0; i<FNV128size/2; ++i)
 ctx->Hash[i] = FNV128basis[i];
 ctx->Computed = FNVinited+FNV128state;
 return fnvSuccess;
} /* end FNV128init */

/* initialize context with a provided 16-byte vector basis (32-bit)
 **/
int FNV128initBasis (FNV128context * const ctx,
 const uint8_t basis[FNV128size]) {
 if (!ctx || !basis)
 return fnvNull;
 for (int i=0; i < FNV128size/2; ++i) {
 uint32_t temp = *basis++;
 ctx->Hash[i] = (temp<<8) + *basis++;
 }
 ctx->Computed = FNVinited+FNV128state;
 return fnvSuccess;
} /* end FNV128initBasis */

/* hash in a counted block (32-bit)
 ***/
int FNV128blockin (FNV128context * const ctx,
 const void *vin,
 long int length) {
 const uint8_t *in = (const uint8_t*)vin;
 uint32_t temp[FNV128size/2];
 uint32_t temp2[3];
 int i;

 if (!ctx || !in)
 return fnvNull;
 if (length < 0)
 return fnvBadParam;
 switch (ctx->Computed) {
 case FNVinited+FNV128state:
 ctx->Computed = FNVcomputed+FNV128state;
 break;
 case FNVcomputed+FNV128state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i < FNV128size/2; ++i)
 temp[i] = ctx->Hash[i];
 for (; length > 0; length--) {
 /* temp = FNV128prime * (temp ^ *in++); */
 temp[FNV128size/2-1] ^= *in++;
 for (i=2; i >= 0; --i)
 temp2[i] = temp[i+5] << FNV128shift;
 for (i=0; i < (FNV128size/2); ++i)
 temp[i] *= FNV128primeX;
 for (i=2; i >= 0; --i)

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 50

 temp[i] += temp2[i];
 for (i=FNV128size/2-1; i>0; --i) {
 temp[i-1] += temp[i] >> 16;
 temp[i] &= 0xFFFF;
 }
 }
 for (i=0; i < FNV128size/2; ++i)
 ctx->Hash[i] = temp[i];
 return fnvSuccess;
} /* end FNV128blockin */

/* hash in a zero-terminated string not including the zero (32-bit)
 **/
int FNV128stringin (FNV128context * const ctx, const char *in) {
 uint32_t temp[FNV128size/2];
 uint32_t temp2[3];
 int i;
 uint8_t ch;

 if (!ctx || !in)
 return fnvNull;
 switch (ctx->Computed) {
 case FNVinited+FNV128state:
 ctx->Computed = FNVcomputed+FNV128state;
 break;
 case FNVcomputed+FNV128state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i < FNV128size/2; ++i)
 temp[i] = ctx->Hash[i];
 while ((ch = (uint8_t)*in++)) {
 /* temp = FNV128prime * (temp ^ *in++); */
 temp[FNV128size/2-1] ^= ch;
 for (i=2; i >= 0; --i)
 temp2[i] = temp[i+5] << FNV128shift;
 for (i=0; i<(FNV128size/2); ++i)
 temp[i] *= FNV128primeX;
 for (i=2; i >= 0; --i)
 temp[i] += temp2[i];
 for (i=FNV128size/2-1; i>0; --i) {
 temp[i-1] += temp[i] >> 16;
 temp[i] &= 0xFFFF;
 }
 }
 for (i=0; i < FNV128size/2; ++i)
 ctx->Hash[i] = temp[i];
 return fnvSuccess;
} /* end FNV128stringin */

/* return hash (32-bit)
 **/
int FNV128result (FNV128context * const ctx,
 uint8_t out[FNV128size]) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV128state)

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 51

8.2.4. FNV256 Code

The following code is the header and C source for 256-bit FNV-1a providing a byte vector hash.

 return fnvStateError;
 for (int i=0; i<FNV128size/2; ++i) {
 out[2*i] = ctx->Hash[i] >> 8;
 out[2*i+1] = ctx->Hash[i];
 ctx -> Hash[i] = 0;
 }
 ctx->Computed = FNVemptied+FNV128state;
 return fnvSuccess;
} /* end FNV128result */

#endif /* FNV_64bitIntegers */
//**
// END VERSION FOR WHEN YOU ONLY HAVE 32-BIT ARITHMETIC
//**

<CODE ENDS>

<CODE BEGINS> file "FNV256.h"

//************************* FNV256.h ***********************//
//************** See RFC 9923 for details. *****************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

#ifndef _FNV256_H_
#define _FNV256_H_

/*
 * Description:
 * This file provides headers for the 256-bit version of
 * the FNV-1a non-cryptographic hash algorithm.
 */

#include "FNVconfig.h"
#include "FNVErrorCodes.h"

#include <stdint.h>
#define FNV256size (256/8)

/* If you do not have the ISO standard stdint.h header file, then
 * you must typedef the following types:
 *
 * type meaning
 * uint64_t unsigned 64-bit integer (ifdef FNV_64bitIntegers)
 * uint32_t unsigned 32-bit integer
 * uint16_t unsigned 16-bit integer
 * uint8_t unsigned 8-bit integer (i.e., unsigned char)
 */

/*

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 52

 * This structure holds context information for an FNV256 hash
 */
#ifdef FNV_64bitIntegers
 /* version if 64-bit integers supported */
typedef struct FNV256context_s {
 int Computed; /* state */
 uint32_t Hash[FNV256size/4];
} FNV256context;

#else
 /* version if 64-bit integers NOT supported */
typedef struct FNV256context_s {
 int Computed; /* state */
 uint16_t Hash[FNV256size/2];
} FNV256context;

#endif /* FNV_64bitIntegers */

/* Function Prototypes:
 *
 * FNV256string: hash a zero-terminated string not including
 * the terminating zero
 * FNV256stringBasis: also takes an offset_basis parameter
 *
 * FNV256block: hash a byte vector of a specified length
 * FNV256blockBasis: also takes an offset_basis parameter
 *
 * FNV256file: hash the contents of a file
 * FNV256fileBasis: also takes an offset_basis parameter
 *
 * FNV256init: initializes an FNV256 context
 * FNV256initBasis: initializes an FNV256 context with a
 * provided 32-byte vector basis
 * FNV256blockin: hash in a byte vector of a specified length
 * FNV256stringin: hash in a zero-terminated string not
 * including the terminating zero
 * FNV256filein: hash in the contents of a file
 * FNV256result: returns the hash value
 *
 * Hash is returned as an array of 8-bit unsigned integers
 */

#ifdef __cplusplus
extern "C" {
#endif

/* FNV256 */
extern int FNV256string (const char *in,
 uint8_t out[FNV256size]);
extern int FNV256stringBasis (const char *in,
 uint8_t out[FNV256size],
 const uint8_t basis[FNV256size]);
extern int FNV256block (const void *vin,
 long int length,
 uint8_t out[FNV256size]);
extern int FNV256blockBasis (const void *vin,
 long int length,
 uint8_t out[FNV256size],

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 53

 const uint8_t basis[FNV256size]);
extern int FNV256file (const char *fname,
 uint8_t out[FNV256size]);
extern int FNV256fileBasis (const char *fname,
 uint8_t out[FNV256size],
 const uint8_t basis[FNV256size]);
extern int FNV256init (FNV256context * const);
extern int FNV256initBasis (FNV256context * const,
 const uint8_t basis[FNV256size]);
extern int FNV256blockin (FNV256context * const,
 const void *vin,
 long int length);
extern int FNV256stringin (FNV256context * const,
 const char *in);
extern int FNV256filein (FNV256context * const,
 const char *fname);
extern int FNV256result (FNV256context * const,
 uint8_t out[FNV256size]);

#ifdef __cplusplus
}
#endif

#endif /* _FNV256_H_ */

<CODE ENDS>

<CODE BEGINS> file "FNV256.c"

//**************************** FNV256.c **************************//
//******************* See RFC 9923 for details. ******************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

/* This file implements the FNV (Fowler/Noll/Vo) non-cryptographic
 * hash function FNV-1a for 256-bit hashes.
 */

#include <stdio.h>

#include "fnv-private.h"
#include "FNV256.h"

//***
// COMMON CODE FOR 64- AND 32-BIT INTEGER MODES
//***

/* FNV256: hash a zero-terminated string not including the zero
 **/
int FNV256string (const char *in, uint8_t out[FNV256size]) {
 FNV256context ctx;
 int error;

 if ((error = FNV256init (&ctx)))

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 54

 return error;
 if ((error = FNV256stringin (&ctx, in)))
 return error;
 return FNV256result (&ctx, out);
} /* end FNV256string */

/* FNV256: hash a zero-terminated string not including the zero
 * with a non-standard basis
 **/
int FNV256stringBasis (const char *in,
 uint8_t out[FNV256size],
 const uint8_t basis[FNV256size]) {
 FNV256context ctx;
 int error;

 if ((error = FNV256initBasis (&ctx, basis)))
 return error;
 if ((error = FNV256stringin (&ctx, in)))
 return error;
 return FNV256result (&ctx, out);
} /* end FNV256stringBasis */

/* FNV256: hash a counted block (64/32-bit)
 **/
int FNV256block (const void *vin,
 long int length,
 uint8_t out[FNV256size]) {
 FNV256context ctx;
 int error;

 if ((error = FNV256init (&ctx)))
 return error;
 if ((error = FNV256blockin (&ctx, vin, length)))
 return error;
 return FNV256result (&ctx, out);
} /* end FNV256block */

/* FNV256: hash a counted block (64/32-bit)
 * with a non-standard basis
 **/
int FNV256blockBasis (const void *vin,
 long int length,
 uint8_t out[FNV256size],
 const uint8_t basis[FNV256size]) {
 FNV256context ctx;
 int error;

 if ((error = FNV256initBasis (&ctx, basis)))
 return error;
 if ((error = FNV256blockin (&ctx, vin, length)))
 return error;
 return FNV256result (&ctx, out);
} /* end FNV256blockBasis */

/* hash the contents of a file
 **/
int FNV256file (const char *fname,
 uint8_t out[FNV256size]) {

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 55

 FNV256context e256Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV256init (&e256Context)))
 return error;
 if ((error = FNV256filein (&e256Context, fname)))
 return error;
 return FNV256result (&e256Context, out);
} /* end FNV256file */

/* hash the contents of a file with a non-standard basis
 **/
int FNV256fileBasis (const char *fname,
 uint8_t out[FNV256size],
 const uint8_t basis[FNV256size]) {
 FNV256context e256Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV256initBasis (&e256Context, basis)))
 return error;
 if ((error = FNV256filein (&e256Context, fname)))
 return error;
 return FNV256result (&e256Context, out);
} /* end FNV256fileBasis */

/* hash in the contents of a file
 **/
int FNV256filein (FNV256context * const e256Context,
 const char *fname) {
 FILE *fp;
 long int i;
 char buf[1024];
 int error;

 if (!e256Context || !fname)
 return fnvNull;
 switch (e256Context->Computed) {
 case FNVinited+FNV256state:
 e256Context->Computed = FNVcomputed+FNV256state;
 break;
 case FNVcomputed+FNV256state:
 break;
 default:
 return fnvStateError;
 }
 if ((fp = fopen (fname, "rb")) == NULL)
 return fnvBadParam;
 if ((error = FNV256blockin (e256Context, "", 0))) {
 fclose(fp);
 return error;
 }
 while ((i = fread (buf, 1, sizeof(buf), fp)) > 0)
 if ((error = FNV256blockin (e256Context, buf, i))) {
 fclose(fp);

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 56

 return error;
 }
 error = ferror(fp);
 fclose(fp);
 if (error) return fnvBadParam;
 return fnvSuccess;
} /* end FNV256filein */

//***
// START VERSION FOR WHEN YOU HAVE 64-BIT ARITHMETIC
//***
#ifdef FNV_64bitIntegers

/* 256-bit FNV_prime = 2^168 + 2^8 + 0x63 */
/* 0x0000000000000000 0000010000000000
 0000000000000000 0000000000000163 */
#define FNV256primeX 0x0163
#define FNV256shift 8

//***
// Set of init, input, and output functions below
// to incrementally compute FNV256
//***

/* initialize context (64-bit)
 **/
int FNV256init (FNV256context * const ctx) {
 const uint32_t FNV256basis[FNV256size/4] = {
 0xDD268DBC, 0xAAC55036, 0x2D98C384, 0xC4E576CC,
 0xC8B15368, 0x47B6BBB3, 0x1023B4C8, 0xCAEE0535 };

 if (!ctx)
 return fnvNull;
 for (int i=0; i<FNV256size/4; ++i)
 ctx->Hash[i] = FNV256basis[i];
 ctx->Computed = FNVinited+FNV256state;
 return fnvSuccess;
} /* end FNV256init */

/* initialize context with a provided 32-byte vector basis (64-bit)
 * with a non-standard basis
 **/
int FNV256initBasis (FNV256context * const ctx,
 const uint8_t basis[FNV256size]) {
 if (!ctx || !basis)
 return fnvNull;
 for (int i=0; i < FNV256size/4; ++i) {
 uint32_t temp = *basis++<<24;
 temp += *basis++<<16;
 temp += *basis++<<8;
 ctx->Hash[i] = temp + *basis++;
 }
 ctx->Computed = FNVinited+FNV256state;
 return fnvSuccess;
} /* end FNV256initBasis */

/* hash in a counted block (64-bit)
 **/

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 57

int FNV256blockin (FNV256context * const ctx,
 const void *vin,
 long int length) {
 const uint8_t *in = (const uint8_t*)vin;
 uint64_t temp[FNV256size/4];
 uint64_t temp2[3];
 int i;

 if (!ctx || !in)
 return fnvNull;
 if (length < 0)
 return fnvBadParam;
 switch (ctx->Computed) {
 case FNVinited+FNV256state:
 ctx->Computed = FNVcomputed+FNV256state;
 break;
 case FNVcomputed+FNV256state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV256size/4; ++i)
 temp[i] = ctx->Hash[i];
 for (; length > 0; length--) {
 /* temp = FNV256prime * (temp ^ *in++); */
 temp[FNV256size/4-1] ^= *in++;
 for (i=2; i >= 0; --i)
 temp2[i] = temp[i+5] << FNV256shift;
 for (i=0; i < FNV256size/4; ++i)
 temp[i] *= FNV256primeX;
 for (i=2; i >= 0; --i)
 temp[i] += temp2[i];
 for (i=FNV256size/4-1; i>0; --i) {
 temp[i-1] += temp[i] >> 32;
 temp[i] &= 0xFFFFFFFF;
 }
 }
 for (i=0; i<FNV256size/4; ++i)
 ctx->Hash[i] = (uint32_t)temp[i];
 return fnvSuccess;
} /* end FNV256blockin */

/* hash in a zero-terminated string not including the zero (64-bit)
 **/
int FNV256stringin (FNV256context * const ctx, const char *in) {
 uint64_t temp[FNV256size/4];
 uint64_t temp2[3];
 int i;
 uint8_t ch;

 if (!ctx || !in)
 return fnvNull;
 switch (ctx->Computed) {
 case FNVinited+FNV256state:
 ctx->Computed = FNVcomputed+FNV256state;
 break;
 case FNVcomputed+FNV256state:
 break;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 58

 default:
 return fnvStateError;
 }
 for (i=0; i<FNV256size/4; ++i)
 temp[i] = ctx->Hash[i];
 while ((ch = (uint8_t)*in++)) {
 /* temp = FNV256prime * (temp ^ ch); */
 temp[FNV256size/4-1] ^= ch;
 for (i=2; i >= 0; --i)
 temp2[i] = temp[i+5] << FNV256shift;
 for (i=0; i<FNV256size/4; ++i)
 temp[i] *= FNV256primeX;
 for (i=2; i >= 0; --i)
 temp[i] += temp2[i];
 for (i=FNV256size/4-1; i>0; --i) {
 temp[i-1] += temp[i] >> 32;
 temp[i] &= 0xFFFFFFFF;
 }
 }
 for (i=0; i<FNV256size/4; ++i)
 ctx->Hash[i] = (uint32_t)temp[i];
 return fnvSuccess;
} /* end FNV256stringin */

/* return hash as 8-byte vector (64-bit)
 **/
int FNV256result (FNV256context * const ctx,
 uint8_t out[FNV256size]) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV256state)
 return fnvStateError;
 for (int i=0; i<FNV256size/4; ++i) {
 out[4*i] = ctx->Hash[i] >> 24;
 out[4*i+1] = ctx->Hash[i] >> 16;
 out[4*i+2] = ctx->Hash[i] >> 8;
 out[4*i+3] = ctx->Hash[i];
 ctx -> Hash[i] = 0;
 }
 ctx->Computed = FNVemptied+FNV256state;
 return fnvSuccess;
} /* end FNV256result */

//**
// END VERSION FOR WHEN YOU HAVE 64-BIT ARITHMETIC
//**
#else /* FNV_64bitIntegers */
//**
// START VERSION FOR WHEN YOU ONLY HAVE 32-BIT ARITHMETIC
//**

/* 256-bit FNV_prime = 2^168 + 2^8 + 0x63 */
/* 0x00000000 00000000 00000100 00000000
 00000000 00000000 00000000 00000163 */
#define FNV256primeX 0x0163
#define FNV256shift 8

//**

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 59

// Set of init, input, and output functions below
// to incrementally compute FNV256
//**

/* initialize context (32-bit)
 ***/
int FNV256init (FNV256context * const ctx) {
 const uint16_t FNV256basis[FNV256size/2] = {
0xDD26, 0x8DBC, 0xAAC5, 0x5036, 0x2D98, 0xC384, 0xC4E5, 0x76CC,
0xC8B1, 0x5368, 0x47B6, 0xBBB3, 0x1023, 0xB4C8, 0xCAEE, 0x0535 };

 if (!ctx)
 return fnvNull;
 for (int i=0; i<FNV256size/2; ++i)
 ctx->Hash[i] = FNV256basis[i];
 ctx->Computed = FNVinited+FNV256state;
 return fnvSuccess;
} /* end FNV256init */

/* initialize context with a provided 32-byte vector basis (32-bit)
 **/
int FNV256initBasis (FNV256context * const ctx,
 const uint8_t basis[FNV256size]) {
 if (!ctx || !basis)
 return fnvNull;
 for (int i=0; i < FNV256size/2; ++i) {
 uint32_t temp = *basis++;
 ctx->Hash[i] = (temp<<8) + *basis++;
 }
 ctx->Computed = FNVinited+FNV256state;
 return fnvSuccess;
} /* end FNV256initBasis */

/* hash in a counted block (32-bit)
 ***/
int FNV256blockin (FNV256context * const ctx,
 const void *vin,
 long int length) {
 const uint8_t *in = (const uint8_t*)vin;
 uint32_t temp[FNV256size/2];
 uint32_t temp2[6];
 int i;

 if (!ctx || !in)
 return fnvNull;
 if (length < 0)
 return fnvBadParam;
 switch (ctx->Computed) {
 case FNVinited+FNV256state:
 ctx->Computed = FNVcomputed+FNV256state;
 break;
 case FNVcomputed+FNV256state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV256size/2; ++i)
 temp[i] = ctx->Hash[i];

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 60

 for (; length > 0; length--) {
 /* temp = FNV256prime * (temp ^ *in++); */
 temp[FNV256size/2-1] ^= *in++;
 for (i=0; i<6; ++i)
 temp2[5-i] = temp[FNV256size/2-1-i] << FNV256shift;
 for (i=0; i<FNV256size/2; ++i)
 temp[i] *= FNV256primeX;
 for (i=0; i<6; ++i)
 temp[i] += temp2[i];
 for (i=FNV256size/2-1; i>0; --i) {
 temp[i-1] += temp[i] >> 16;
 temp[i] &= 0xFFFF;
 }
 }
 for (i=0; i<FNV256size/2; ++i)
 ctx->Hash[i] = temp[i];
 return fnvSuccess;
} /* end FNV256blockin */

/* hash in a zero-terminated string not including the zero (32-bit)
 **/
int FNV256stringin (FNV256context * const ctx, const char *in) {
 uint32_t temp[FNV256size/2];
 uint32_t temp2[6];
 int i;
 uint8_t ch;

 if (!ctx || !in)
 return fnvNull;
 switch (ctx->Computed) {
 case FNVinited+FNV256state:
 ctx->Computed = FNVcomputed+FNV256state;
 break;
 case FNVcomputed+FNV256state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV256size/2; ++i)
 temp[i] = ctx->Hash[i];
 while ((ch = (uint8_t)*in++)) {
 /* temp = FNV256prime * (temp ^ *in++); */
 temp[FNV256size/2-1] ^= ch;
 for (i=0; i<6; ++i)
 temp2[5-i] = temp[FNV256size/2-1-i] << FNV256shift;
 for (i=0; i<FNV256size/2; ++i)
 temp[i] *= FNV256primeX;
 for (i=0; i<6; ++i)
 temp[i] += temp2[i];
 for (i=FNV256size/2-1; i>0; --i) {
 temp[i-1] += temp[i] >> 16;
 temp[i] &= 0xFFFF;
 }
 }
 for (i=0; i<FNV256size/2; ++i)
 ctx->Hash[i] = temp[i];
 return fnvSuccess;
} /* end FNV256stringin */

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 61

8.2.5. FNV512 Code

The following code is the header and C source for 512-bit FNV-1a providing a byte vector hash.

/* return hash (32-bit)
 ***/
int FNV256result (FNV256context * const ctx,
 uint8_t out[FNV256size]) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV256state)
 return fnvStateError;
 for (int i=0; i<FNV256size/2; ++i) {
 out[2*i] = ctx->Hash[i] >> 8;
 out[2*i+1] = ctx->Hash[i];
 ctx->Hash[i] = 0;
 }
 ctx->Computed = FNVemptied+FNV256state;
 return fnvSuccess;
} /* end FNV256result */

#endif /* FNV_64bitIntegers */
//**
// END VERSION FOR WHEN YOU ONLY HAVE 32-BIT ARITHMETIC
//**

<CODE ENDS>

<CODE BEGINS> file "FNV512.h"

//************************* FNV512.h ***********************//
//************** See RFC 9923 for details. *****************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

#ifndef _FNV512_H_
#define _FNV512_H_

/*
 * Description:
 * This file provides headers for the 512-bit version of
 * the FNV-1a non-cryptographic hash algorithm.
 */

#include "FNVconfig.h"
#include "FNVErrorCodes.h"

#include <stdint.h>
#define FNV512size (512/8)

/* If you do not have the ISO standard stdint.h header file, then
 * you must typedef the following types:
 *

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 62

 * type meaning
 * uint64_t unsigned 64-bit integer (ifdef FNV_64bitIntegers)
 * uint32_t unsigned 32-bit integer
 * uint16_t unsigned 16-bit integer
 * uint8_t unsigned 8-bit integer (i.e., unsigned char)
 */

/*
 * This structure holds context information for an FNV512 hash
 */
#ifdef FNV_64bitIntegers
 /* version if 64-bit integers supported */
typedef struct FNV512context_s {
 int Computed; /* state */
 uint32_t Hash[FNV512size/4];
} FNV512context;

#else
 /* version if 64-bit integers NOT supported */
typedef struct FNV512context_s {
 int Computed; /* state */
 uint16_t Hash[FNV512size/2];
} FNV512context;

#endif /* FNV_64bitIntegers */

/* Function Prototypes:
 *
 * FNV512string: hash a zero-terminated string not including
 * the terminating zero
 * FNV512stringBasis: also takes an offset_basis parameter
 *
 * FNV512block: hash a byte vector of a specified length
 * FNV512blockBasis: also takes an offset_basis parameter
 *
 * FNV512file: hash the contents of a file
 * FNV512fileBasis: also takes an offset_basis parameter
 *
 * FNV512init: initializes an FNV512 context
 * FNV512initBasis: initializes an FNV512 context with a
 * provided 64-byte vector basis
 * FNV512blockin: hash in a byte vector of a specified length
 * FNV512stringin: hash in a zero-terminated string not
 * including the terminating zero
 * FNV512filein: hash in the contents of a file
 * FNV512result: returns the hash value
 *
 * Hash is returned as an array of 8-bit unsigned integers
 */

#ifdef __cplusplus
extern "C" {
#endif

/* FNV512 */
extern int FNV512string (const char *in,
 uint8_t out[FNV512size]);
extern int FNV512stringBasis (const char *in,

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 63

 uint8_t out[FNV512size],
 const uint8_t basis[FNV512size]);
extern int FNV512block (const void *vin,
 long int length,
 uint8_t out[FNV512size]);
extern int FNV512blockBasis (const void *vin,
 long int length,
 uint8_t out[FNV512size],
 const uint8_t basis[FNV512size]);
extern int FNV512file (const char *fname,
 uint8_t out[FNV512size]);
extern int FNV512fileBasis (const char *fname,
 uint8_t out[FNV512size],
 const uint8_t basis[FNV512size]);
extern int FNV512init (FNV512context * const);
extern int FNV512initBasis (FNV512context * const,
 const uint8_t basis[FNV512size]);
extern int FNV512blockin (FNV512context * const,
 const void *vin,
 long int length);
extern int FNV512stringin (FNV512context * const,
 const char *in);
extern int FNV512filein (FNV512context * const,
 const char *fname);
extern int FNV512result (FNV512context * const,
 uint8_t out[FNV512size]);

#ifdef __cplusplus
}
#endif

#endif /* _FNV512_H_ */

<CODE ENDS>

<CODE BEGINS> file "FNV512.c"

//**************************** FNV512.c **************************//
//******************* See RFC 9923 for details. ******************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

/* This file implements the FNV (Fowler/Noll/Vo) non-cryptographic
 * hash function FNV-1a for 512-bit hashes.
 */

#include <stdio.h>

#include "fnv-private.h"
#include "FNV512.h"

//***
// COMMON CODE FOR 64- AND 32-BIT INTEGER MODES
//***

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 64

/* FNV512: hash a zero-terminated string not including the zero
 **/
int FNV512string (const char *in, uint8_t out[FNV512size]) {
 FNV512context ctx;
 int error;

 if ((error = FNV512init (&ctx)))
 return error;
 if ((error = FNV512stringin (&ctx, in)))
 return error;
 return FNV512result (&ctx, out);
} /* end FNV512string */

/* FNV512: hash a zero-terminated string not including the zero
 * with a non-standard basis
 **/
int FNV512stringBasis (const char *in,
 uint8_t out[FNV512size],
 const uint8_t basis[FNV512size]) {
 FNV512context ctx;
 int error;

 if ((error = FNV512initBasis (&ctx, basis)))
 return error;
 if ((error = FNV512stringin (&ctx, in)))
 return error;
 return FNV512result (&ctx, out);
} /* end FNV512stringBasis */

/* FNV512: hash a counted block (64/32-bit)
 **/
int FNV512block (const void *vin,
 long int length,
 uint8_t out[FNV512size]) {
 FNV512context ctx;
 int error;

 if ((error = FNV512init (&ctx)))
 return error;
 if ((error = FNV512blockin (&ctx, vin, length)))
 return error;
 return FNV512result (&ctx, out);
} /* end FNV512block */

/* FNV512: hash a counted block (64/32-bit)
 * with a non-standard basis
 **/
int FNV512blockBasis (const void *vin,
 long int length,
 uint8_t out[FNV512size],
 const uint8_t basis[FNV512size]) {
 FNV512context ctx;
 int error;

 if ((error = FNV512initBasis (&ctx, basis)))
 return error;
 if ((error = FNV512blockin (&ctx, vin, length)))

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 65

 return error;
 return FNV512result (&ctx, out);
} /* end FNV512blockBasis */

/* hash the contents of a file
 **/
int FNV512file (const char *fname,
 uint8_t out[FNV512size]) {
 FNV512context e512Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV512init (&e512Context)))
 return error;
 if ((error = FNV512filein (&e512Context, fname)))
 return error;
 return FNV512result (&e512Context, out);
} /* end FNV512file */

/* hash the contents of a file with a non-standard basis
 **/
int FNV512fileBasis (const char *fname,
 uint8_t out[FNV512size],
 const uint8_t basis[FNV512size]) {
 FNV512context e512Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV512initBasis (&e512Context, basis)))
 return error;
 if ((error = FNV512filein (&e512Context, fname)))
 return error;
 return FNV512result (&e512Context, out);
} /* end FNV512fileBasis */

/* hash in the contents of a file
 **/
int FNV512filein (FNV512context * const e512Context,
 const char *fname) {
 FILE *fp;
 long int i;
 char buf[1024];
 int error;

 if (!e512Context || !fname)
 return fnvNull;
 switch (e512Context->Computed) {
 case FNVinited+FNV512state:
 e512Context->Computed = FNVcomputed+FNV512state;
 break;
 case FNVcomputed+FNV512state:
 break;
 default:
 return fnvStateError;
 }
 if ((fp = fopen (fname, "rb")) == NULL)

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 66

 return fnvBadParam;
 if ((error = FNV512blockin (e512Context, "", 0))) {
 fclose(fp);
 return error;
 }
 while ((i = fread (buf, 1, sizeof(buf), fp)) > 0)
 if ((error=FNV512blockin (e512Context, buf, i))) {
 fclose(fp);
 return error;
 }
 error = ferror(fp);
 fclose(fp);
 if (error) return fnvBadParam;
 return fnvSuccess;
} /* end FNV512filein */

//***
// START VERSION FOR WHEN YOU HAVE 64-BIT ARITHMETIC
//***
#ifdef FNV_64bitIntegers

/* 512-bit FNV_prime = 2^344 + 2^8 + 0x57 =
 0x0000000000000000 0000000000000000
 0000000001000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000157 */
#define FNV512primeX 0x0157
#define FNV512shift 24

//***
// Set of init, input, and output functions below
// to incrementally compute FNV512
//***

/* initialize context (64-bit)
 **/
int FNV512init (FNV512context * const ctx) {
 const uint32_t FNV512basis[FNV512size/4] = {
 0xB86DB0B1, 0x171F4416, 0xDCA1E50F, 0x309990AC,
 0xAC87D059, 0xC9000000, 0x00000000, 0x00000D21,
 0xE948F68A, 0x34C192F6, 0x2EA79BC9, 0x42DBE7CE,
 0x18203641, 0x5F56E34B, 0xAC982AAC, 0x4AFE9FD9 };

 if (!ctx)
 return fnvNull;
 for (int i=0; i<FNV512size/4; ++i)
 ctx->Hash[i] = FNV512basis[i];
 ctx->Computed = FNVinited+FNV512state;
 return fnvSuccess;
} /* end FNV512init */

/* initialize context with a provided 64-byte vector basis (64-bit)
 **/
int FNV512initBasis (FNV512context * const ctx,
 const uint8_t basis[FNV512size]) {
 if (!ctx || !basis)
 return fnvNull;
 for (int i=0; i < FNV512size/4; ++i) {

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 67

 uint32_t temp = *basis++<<24;
 temp += *basis++<<16;
 temp += *basis++<<8;
 ctx->Hash[i] = temp + *basis++;
 }
 ctx->Computed = FNVinited+FNV512state;
 return fnvSuccess;
} /* end FNV512initBasis */

/* hash in a counted block (64-bit)
 **/
int FNV512blockin (FNV512context * const ctx,
 const void *vin,
 long int length) {
 const uint8_t *in = (const uint8_t*)vin;
 uint64_t temp[FNV512size/4];
 uint64_t temp2[6];
 int i;

 if (!ctx || !in)
 return fnvNull;
 if (length < 0)
 return fnvBadParam;
 switch (ctx->Computed) {
 case FNVinited+FNV512state:
 ctx->Computed = FNVcomputed+FNV512state;
 break;
 case FNVcomputed+FNV512state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV512size/4; ++i)
 temp[i] = ctx->Hash[i]; // copy into temp
 for (; length > 0; length--) {
 /* temp = FNV512prime * (temp ^ *in++); */
 temp[FNV512size/4-1] ^= *in++;
 for (i=0; i<6; ++i)
 temp2[5-i] = temp[FNV512size/4-1-i] << FNV512shift;
 for (i=0; i<FNV512size/4; ++i)
 temp[i] *= FNV512primeX;
 for (i=0; i<6; ++i)
 temp[i] += temp2[i];
 for (i=FNV512size/4-1; i>0; --i) {
 temp[i-1] += temp[i] >> 32; // propagate carries
 temp[i] &= 0xFFFFFFFF;
 }
 } /* end for length */
 for (i=0; i<FNV512size/4; ++i)
 ctx->Hash[i] = (uint32_t)temp[i]; // store back into hash
 return fnvSuccess;
} /* end FNV512blockin */

/* hash in a zero-terminated string not including the zero (64-bit)
 **/
int FNV512stringin (FNV512context * const ctx, const char *in) {
 uint64_t temp[FNV512size/4];
 uint64_t temp2[6];

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 68

 int i;
 uint8_t ch;

 if (!ctx || !in)
 return fnvNull;
 switch (ctx->Computed) {
 case FNVinited+FNV512state:
 ctx->Computed = FNVcomputed+FNV512state;
 break;
 case FNVcomputed+FNV512state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV512size/4; ++i)
 temp[i] = ctx->Hash[i]; // copy into temp
 while ((ch = (uint8_t)*in++)) {
 /* temp = FNV512prime * (temp ^ ch); */
 temp[FNV512size/4-1] ^= ch;
 for (i=0; i<6; ++i)
 temp2[5-i] = temp[FNV512size/4-1-i] << FNV512shift;
 for (i=0; i<FNV512size/4; ++i)
 temp[i] *= FNV512primeX;
 for (i=0; i<6; ++i)
 temp[i] += temp2[i];
 for (i=FNV512size/4-1; i>0; --i) {
 temp[i-1] += temp[i] >> 32; // propagate carries
 temp[i] &= 0xFFFFFFFF;
 }
 }
 for (i=0; i<FNV512size/4; ++i)
 ctx->Hash[i] = (uint32_t)temp[i]; // store back into hash
 return fnvSuccess;
} /* end FNV512stringin */

/* return hash (64-bit)
 **/
int FNV512result (FNV512context * const ctx,
 uint8_t out[FNV512size]) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV512state)
 return fnvStateError;
 for (int i=0; i<FNV512size/4; ++i) {
 out[4*i] = ctx->Hash[i] >> 24;
 out[4*i+1] = ctx->Hash[i] >> 16;
 out[4*i+2] = ctx->Hash[i] >> 8;
 out[4*i+3] = ctx->Hash[i];
 ctx -> Hash[i] = 0;
 }
 ctx->Computed = FNVemptied+FNV512state;
 return fnvSuccess;
} /* end FNV512result */

//***
// END VERSION FOR WHEN YOU HAVE 64-BIT ARITHMETIC
//***
#else /* FNV_64bitIntegers */

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 69

//***
// START VERSION FOR WHEN YOU ONLY HAVE 32-BIT ARITHMETIC
//***

/* 512-bit FNV_prime = 2^344 + 2^8 + 0x57 =
 0x00000000 00000000 00000000 00000000
 00000000 01000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000157 */
#define FNV512primeX 0x0157
#define FNV512shift 8

//***
// Set of init, input, and output functions below
// to incrementally compute FNV512
//***

/* initialize context (32-bit)
 **/
int FNV512init (FNV512context * const ctx) {
 const uint16_t FNV512basis[FNV512size/2] = {
0xB86D, 0xB0B1, 0x171F, 0x4416, 0xDCA1, 0xE50F, 0x3099, 0x90AC,
0xAC87, 0xD059, 0xC900, 0x0000, 0x0000, 0x0000, 0x0000, 0x0D21,
0xE948, 0xF68A, 0x34C1, 0x92F6, 0x2EA7, 0x9BC9, 0x42DB, 0xE7CE,
0x1820, 0x3641, 0x5F56, 0xE34B, 0xAC98, 0x2AAC, 0x4AFE, 0x9FD9 };

 if (!ctx)
 return fnvNull;
 for (int i=0; i<FNV512size/2; ++i)
 ctx->Hash[i] = FNV512basis[i];
 ctx->Computed = FNVinited+FNV512state;
 return fnvSuccess;
} /* end FNV512init */

/* initialize context with a provided 64-byte vector basis (32-bit)
 **/
int FNV512initBasis (FNV512context * const ctx,
 const uint8_t basis[FNV512size]) {
 if (!ctx || !basis)
 return fnvNull;
 for (int i=0; i < FNV512size/2; ++i) {
 uint32_t temp = *basis++;
 ctx->Hash[i] = (temp<<8) + *basis++;
 }
 ctx->Computed = FNVinited+FNV512state;
 return fnvSuccess;
} /* end FNV512initBasis */

/* hash in a counted block (32-bit)
 **/
int FNV512blockin (FNV512context * const ctx,
 const void *vin,
 long int length) {
 const uint8_t *in = (const uint8_t*)vin;
 uint32_t temp[FNV512size/2];
 uint32_t temp2[11];
 int i;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 70

 if (!ctx || !in)
 return fnvNull;
 if (length < 0)
 return fnvBadParam;
 switch (ctx->Computed) {
 case FNVinited+FNV512state:
 ctx->Computed = FNVcomputed+FNV512state;
 break;
 case FNVcomputed+FNV512state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV512size/2; ++i)
 temp[i] = ctx->Hash[i]; // copy into temp
 for (; length > 0; length--) {
 /* temp = FNV512prime * (temp ^ *in++); */
 temp[FNV512size/2-1] ^= *in++;
 for (i=0; i<11; ++i)
 temp2[10-i] = temp[FNV512size/2-1-i] << FNV512shift;
 for (i=0; i<FNV512size/2; ++i)
 temp[i] *= FNV512primeX;
 for (i=0; i<11; ++i)
 temp[i] += temp2[i];
 for (i=FNV512size/2-1; i>0; --i) {
 temp[i-1] += temp[i] >> 16; // propagate carries
 temp[i] &= 0xFFFF;
 }
 } /* end for length */
 for (i=0; i<FNV512size/2; ++i)
 ctx->Hash[i] = (uint16_t)temp[i]; // store back into hash
 return fnvSuccess;
} /* end FNV512blockin */

/* hash in a zero-terminated string not including the zero (32-bit)
 **/
int FNV512stringin (FNV512context * const ctx, const char *in) {
 uint32_t temp[FNV512size/2];
 uint32_t temp2[11];
 int i;
 uint8_t ch;

 if (!ctx || !in)
 return fnvNull;
 switch (ctx->Computed) {
 case FNVinited+FNV512state:
 ctx->Computed = FNVcomputed+FNV512state;
 break;
 case FNVcomputed+FNV512state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV512size/2; ++i)
 temp[i] = ctx->Hash[i]; // copy into temp
 while ((ch = (uint8_t)*in++)) {
 /* temp = FNV512prime * (temp ^ *in++); */
 temp[FNV512size/2-1] ^= ch;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 71

8.2.6. FNV1024 Code

The following code is the header and C source for 1024-bit FNV-1a providing a byte vector hash.

 for (i=0; i<11; ++i)
 temp2[10-i] = temp[FNV512size/2-1-i] << FNV512shift;
 for (i=0; i<FNV512size/2; ++i)
 temp[i] *= FNV512primeX;
 for (i=0; i<11; ++i)
 temp[i] += temp2[i];
 for (i=FNV512size/2-1; i>0; --i) {
 temp[i-1] += temp[i] >> 16; // propagate carries
 temp[i] &= 0xFFFF;
 }
 }
 for (i=0; i<FNV512size/2; ++i)
 ctx->Hash[i] = temp[i]; // store back into hash
 return fnvSuccess;
} /* end FNV512stringin */

/* return hash (32-bit)
 **/
int FNV512result (FNV512context * const ctx,
 uint8_t out[FNV512size]) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV512state)
 return fnvStateError;
 for (int i=0; i<FNV512size/2; ++i) {
 out[2*i] = ctx->Hash[i] >> 8;
 out[2*i+1] = ctx->Hash[i];
 ctx->Hash[i] = 0;
 }
 ctx->Computed = FNVemptied+FNV512state;
 return fnvSuccess;
} /* end FNV512result */

#endif /* FNV_64bitIntegers */
//***
// END VERSION FOR WHEN YOU ONLY HAVE 32-BIT ARITHMETIC
//***

<CODE ENDS>

<CODE BEGINS> file "FNV1024.h"

//*********************** FNV1024.h ***********************//
//************* See RFC 9923 for details. *****************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

#ifndef _FNV1024_H_
#define _FNV1024_H_

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 72

/*
 * Description:
 * This file provides headers for the 1024-bit version of
 * the FNV-1a non-cryptographic hash algorithm.
 */

#include "FNVconfig.h"
#include "FNVErrorCodes.h"

#include <stdint.h>
#define FNV1024size (1024/8)

/* If you do not have the ISO standard stdint.h header file, then
 * you must typedef the following types:
 *
 * type meaning
 * uint64_t unsigned 64-bit integer (ifdef FNV_64bitIntegers)
 * uint32_t unsigned 32-bit integer
 * uint16_t unsigned 16-bit integer
 * uint8_t unsigned 8-bit integer (i.e., unsigned char)
 */

/*
 * This structure holds context information for an FNV1024 hash
 */
#ifdef FNV_64bitIntegers
 /* version if 64-bit integers supported */
typedef struct FNV1024context_s {
 int Computed; /* state */
 uint32_t Hash[FNV1024size/4];
} FNV1024context;

#else
 /* version if 64-bit integers NOT supported */
typedef struct FNV1024context_s {
 int Computed; /* state */
 uint16_t Hash[FNV1024size/2];
} FNV1024context;

#endif /* FNV_64bitIntegers */

/* Function Prototypes:
 *
 * FNV1024string: hash a zero-terminated string not including
 * the terminating zero
 * FNV1024stringBasis: also takes an offset_basis parameter
 *
 * FNV1024block: hash a byte vector of a specified length
 * FNV1024blockBasis: also takes an offset_basis parameter
 *
 * FNV1024file: hash the contents of a file
 * FNV1024fileBasis: also takes an offset_basis parameter
 *
 * FNV1024init: initializes an FNV1024 context
 * FNV1024initBasis: initializes an FNV1024 context with a
 * provided 128-byte vector basis
 * FNV1024blockin: hash in a byte vector of a specified length
 * FNV1024stringin: hash in a zero-terminated string not

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 73

 * including the terminating zero
 * FNV1024filein: hash in the contents of a file
 * FNV1024result: returns the hash value
 *
 * Hash is returned as an array of 8-bit unsigned integers
 */

#ifdef __cplusplus
extern "C" {
#endif

/* FNV1024 */
extern int FNV1024string (const char *in,
 uint8_t out[FNV1024size]);
extern int FNV1024stringBasis (const char *in,
 uint8_t out[FNV1024size],
 const uint8_t basis[FNV1024size]);
extern int FNV1024block (const void *vin,
 long int length,
 uint8_t out[FNV1024size]);
extern int FNV1024blockBasis (const void *vin,
 long int length,
 uint8_t out[FNV1024size],
 const uint8_t basis[FNV1024size]);
extern int FNV1024file (const char *fname,
 uint8_t out[FNV1024size]);
extern int FNV1024fileBasis (const char *fname,
 uint8_t out[FNV1024size],
 const uint8_t basis[FNV1024size]);
extern int FNV1024init (FNV1024context * const);
extern int FNV1024initBasis (FNV1024context * const,
 const uint8_t basis[FNV1024size]);
extern int FNV1024blockin (FNV1024context * const,
 const void *vin,
 long int length);
extern int FNV1024stringin (FNV1024context * const,
 const char *in);
extern int FNV1024filein (FNV1024context * const,
 const char *fname);
extern int FNV1024result (FNV1024context * const,
 uint8_t out[FNV1024size]);

#ifdef __cplusplus
}
#endif

#endif /* _FNV1024_H_ */

<CODE ENDS>

<CODE BEGINS> file "FNV1024.c"

//************************** FNV1024.c **************************//
//****************** See RFC 9923 for details. ******************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 74

 * See fnv-private.h for terms of use and redistribution.
 */

/* This file implements the FNV (Fowler/Noll/Vo) non-cryptographic
 * hash function FNV-1a for 1024-bit hashes.
 */

#include <stdio.h>

#include "fnv-private.h"
#include "FNV1024.h"

//***
// COMMON CODE FOR 64- AND 32-BIT INTEGER MODES
//***

/* FNV1024: hash a zero-terminated string not including the zero
 **/
int FNV1024string (const char *in, uint8_t out[FNV1024size]) {
 FNV1024context ctx;
 int error;

 if ((error = FNV1024init (&ctx)))
 return error;
 if ((error = FNV1024stringin (&ctx, in)))
 return error;
 return FNV1024result (&ctx, out);
} /* end FNV1024string */

/* FNV1024: hash a zero-terminated string not including the zero
 * with a non-standard basis
 **/
int FNV1024stringBasis (const char *in,
 uint8_t out[FNV1024size],
 const uint8_t basis[FNV1024size]) {
 FNV1024context ctx;
 int error;

 if ((error = FNV1024initBasis (&ctx, basis)))
 return error;
 if ((error = FNV1024stringin (&ctx, in)))
 return error;
 return FNV1024result (&ctx, out);
} /* end FNV1024stringBasis */

/* FNV1024: hash a counted block (64/32-bit)
 **/
int FNV1024block (const void *vin,
 long int length,
 uint8_t out[FNV1024size]) {
 FNV1024context ctx;
 int error;

 if ((error = FNV1024init (&ctx)))
 return error;
 if ((error = FNV1024blockin (&ctx, vin, length)))
 return error;
 return FNV1024result (&ctx, out);

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 75

} /* end FNV1024block */

/* FNV1024: hash a counted block (64/32-bit)
 * with a non-standard basis
 **/
int FNV1024blockBasis (const void *vin,
 long int length,
 uint8_t out[FNV1024size],
 const uint8_t basis[FNV1024size]) {
 FNV1024context ctx;
 int error;

 if ((error = FNV1024initBasis (&ctx, basis)))
 return error;
 if ((error = FNV1024blockin (&ctx, vin, length)))
 return error;
 return FNV1024result (&ctx, out);
} /* end FNV1024blockBasis */

/* hash the contents of a file
 **/
int FNV1024file (const char *fname,
 uint8_t out[FNV1024size]) {
 FNV1024context e1024Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV1024init (&e1024Context)))
 return error;
 if ((error = FNV1024filein (&e1024Context, fname)))
 return error;
 return FNV1024result (&e1024Context, out);
} /* end FNV1024file */

/* hash the contents of a file with a non-standard basis
 **/
int FNV1024fileBasis (const char *fname,
 uint8_t out[FNV1024size],
 const uint8_t basis[FNV1024size]) {
 FNV1024context e1024Context;
 int error;

 if (!out)
 return fnvNull;
 if ((error = FNV1024initBasis (&e1024Context, basis)))
 return error;
 if ((error = FNV1024filein (&e1024Context, fname)))
 return error;
 return FNV1024result (&e1024Context, out);
} /* end FNV1024fileBasis */

/* hash in the contents of a file
 **/
int FNV1024filein (FNV1024context * const e1024Context,
 const char *fname) {
 FILE *fp;
 long int i;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 76

 char buf[1024];
 int error;

 if (!e1024Context || !fname)
 return fnvNull;
 switch (e1024Context->Computed) {
 case FNVinited+FNV1024state:
 e1024Context->Computed = FNVcomputed+FNV1024state;
 break;
 case FNVcomputed+FNV1024state:
 break;
 default:
 return fnvStateError;
 }
 if ((fp = fopen (fname, "rb")) == NULL)
 return fnvBadParam;
 if ((error = FNV1024blockin (e1024Context, "", 0))) {
 fclose(fp);
 return error;
 }
 while ((i = fread (buf, 1, sizeof(buf), fp)) > 0)
 if ((error = FNV1024blockin (e1024Context, buf, i))) {
 fclose(fp);
 return error;
 }
 error = ferror(fp);
 fclose(fp);
 if (error) return fnvBadParam;
 return fnvSuccess;
} /* end FNV1024filein */

//**//
// START VERSION FOR WHEN YOU HAVE 64-BIT ARITHMETIC
//**//
#ifdef FNV_64bitIntegers

/* 1024-bit FNV_prime = 2^680 + 2^8 + 0x8d =
 0x0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000010000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 000000000000018D */
#define FNV1024primeX 0x018D
#define FNV1024shift 8

//***//
// Set of init, input, and output functions below
// to incrementally compute FNV1024
//**//

/* initialize context (64-bit)
 **/
int FNV1024init (FNV1024context * const ctx) {
 const uint32_t FNV1024basis[FNV1024size/4] = {
 0x00000000, 0x00000000, 0x005F7A76, 0x758ECC4D,

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 77

 0x32E56D5A, 0x591028B7, 0x4B29FC42, 0x23FDADA1,
 0x6C3BF34E, 0xDA3674DA, 0x9A21D900, 0x00000000,
 0x00000000, 0x00000000, 0x00000000, 0x00000000,
 0x00000000, 0x00000000, 0x00000000, 0x00000000,
 0x00000000, 0x00000000, 0x00000000, 0x0004C6D7,
 0xEB6E7380, 0x2734510A, 0x555F256C, 0xC005AE55,
 0x6BDE8CC9, 0xC6A93B21, 0xAFF4B16C, 0x71EE90B3 };

 if (!ctx)
 return fnvNull;
 for (int i=0; i<FNV1024size/4; ++i)
 ctx->Hash[i] = FNV1024basis[i];
 ctx->Computed = FNVinited+FNV1024state;
 return fnvSuccess;
} /* end FNV1024init */

/* initialize context with a provided 128-byte vector basis (64-bit)
 ***/
int FNV1024initBasis (FNV1024context * const ctx,
 const uint8_t basis[FNV1024size]) {
 if (!ctx || !basis)
 return fnvNull;
 for (int i=0; i < FNV1024size/4; ++i) {
 uint32_t temp = *basis++<<24;
 temp += *basis++<<16;
 temp += *basis++<<8;
 ctx->Hash[i] = temp + *basis++;
 }
 ctx->Computed = FNVinited+FNV1024state;
 return fnvSuccess;
} /* end FNV1024initBasis */

/* hash in a counted block (64-bit)
 **/
int FNV1024blockin (FNV1024context * const ctx,
 const void *vin,
 long int length) {
 const uint8_t *in = (const uint8_t*)vin;
 uint64_t temp[FNV1024size/4];
 uint64_t temp2[11];
 int i;

 if (!ctx || !in)
 return fnvNull;
 if (length < 0)
 return fnvBadParam;
 switch (ctx->Computed) {
 case FNVinited+FNV1024state:
 ctx->Computed = FNVcomputed+FNV1024state;
 break;
 case FNVcomputed+FNV1024state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV1024size/4; ++i)
 temp[i] = ctx->Hash[i]; // copy into temp
 for (; length > 0; length--) {

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 78

 /* temp = FNV1024prime * (temp ^ *in++); */
 temp[FNV1024size/4-1] ^= *in++;
 for (i=0; i<11; ++i)
 temp2[10-i] = temp[FNV1024size/4-1-i] << FNV1024shift;
 for (i=0; i<FNV1024size/4; ++i)
 temp[i] *= FNV1024primeX;
 for (i=0; i<11; ++i)
 temp[i] += temp2[i];
 for (i=FNV1024size/4-1; i>0; --i) {
 temp[i-1] += temp[i] >> 32; // propagate carries
 temp[i] &= 0xFFFFFFFF;
 }
 } /* end for length */
 for (i=0; i<FNV1024size/4; ++i)
 ctx->Hash[i] = (uint32_t)temp[i]; // store back into hash
 return fnvSuccess;
} /* end FNV1024blockin */

/* hash in a zero-terminated string not including the zero (64-bit)
 **/
int FNV1024stringin (FNV1024context * const ctx, const char *in) {
 uint64_t temp[FNV1024size/4];
 uint64_t temp2[11];
 int i;
 uint8_t ch;

 if (!ctx || !in)
 return fnvNull;
 switch (ctx->Computed) {
 case FNVinited+FNV1024state:
 ctx->Computed = FNVcomputed+FNV1024state;
 break;
 case FNVcomputed+FNV1024state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV1024size/4; ++i)
 temp[i] = ctx->Hash[i]; // copy into temp
 while ((ch = (uint8_t)*in++)) {
 /* temp = FNV1024prime * (temp ^ ch); */
 temp[FNV1024size/4-1] ^= ch;
 for (i=0; i<11; ++i)
 temp2[10-i] = temp[FNV1024size/4-1-i] << FNV1024shift;
 for (i=0; i<FNV1024size/4; ++i)
 temp[i] *= FNV1024primeX;
 for (i=0; i<11; ++i)
 temp[i] += temp2[i];
 for (i=FNV1024size/4-1; i>0; --i) {
 temp[i-1] += temp[i] >> 32;
 temp[i] &= 0xFFFFFFFF;
 }
 }
 for (i=0; i<FNV1024size/4; ++i)
 ctx->Hash[i] = (uint32_t)temp[i]; // store back into hash
 return fnvSuccess;
} /* end FNV1024stringin */

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 79

/* return hash (64-bit)
 **/
int FNV1024result (FNV1024context * const ctx,
 uint8_t out[FNV1024size]) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV1024state)
 return fnvStateError;
 for (int i=0; i<FNV1024size/4; ++i) {
 out[4*i] = ctx->Hash[i] >> 24;
 out[4*i+1] = ctx->Hash[i] >> 16;
 out[4*i+2] = ctx->Hash[i] >> 8;
 out[4*i+3] = ctx->Hash[i];
 ctx -> Hash[i] = 0;
 }
 ctx->Computed = FNVemptied+FNV1024state;
 return fnvSuccess;
} /* end FNV1024result */

//**//
// END VERSION FOR WHEN YOU HAVE 64-BIT ARITHMETIC
//**//
#else /* FNV_64bitIntegers */
//**//
// START VERSION FOR WHEN YOU ONLY HAVE 32-BIT ARITHMETIC
//**//

/*
 1024-bit FNV_prime = 2^680 + 2^8 + 0x8d =
 0x00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000100 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 0000018D */
#define FNV1024primeX 0x018D
#define FNV1024shift 8

//***
// Set of init, input, and output functions below
// to incrementally compute FNV1024
//***

/* initialize context (32-bit)
 **/
int FNV1024init (FNV1024context * const ctx) {
 const uint16_t FNV1024basis[FNV1024size/2] = {
0x0000, 0x0000, 0x0000, 0x0000, 0x005F, 0x7A76, 0x758E, 0xCC4D,
0x32E5, 0x6D5A, 0x5910, 0x28B7, 0x4B29, 0xFC42, 0x23FD, 0xADA1,
0x6C3B, 0xF34E, 0xDA36, 0x74DA, 0x9A21, 0xD900, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0004, 0xC6D7,
0xEB6E, 0x7380, 0x2734, 0x510A, 0x555F, 0x256C, 0xC005, 0xAE55,
0x6BDE, 0x8CC9, 0xC6A9, 0x3B21, 0xAFF4, 0xB16C, 0x71EE, 0x90B3 };

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 80

 if (!ctx)
 return fnvNull;
 for (int i=0; i<FNV1024size/2; ++i)
 ctx->Hash[i] = FNV1024basis[i];
 ctx->Computed = FNVinited+FNV1024state;
 return fnvSuccess;
} /* end FNV1024init */

/* initialize context with a provided 128-byte vector basis (32-bit)
 ***/
int FNV1024initBasis (FNV1024context * const ctx,
 const uint8_t basis[FNV1024size]) {
 if (!ctx || !basis)
 return fnvNull;
 for (int i=0; i < FNV1024size/2; ++i) {
 uint32_t temp = *basis++;
 ctx->Hash[i] = (temp<<8) + *basis++;
 }
 ctx->Computed = FNVinited+FNV1024state;
 return fnvSuccess;
} /* end FNV1024initBasis */

/* hash in a counted block (32-bit)
 **/
int FNV1024blockin (FNV1024context * const ctx,
 const void *vin,
 long int length) {
 const uint8_t *in = (const uint8_t*)vin;
 uint32_t temp[FNV1024size/2];
 uint32_t temp2[22];
 int i;

 if (!ctx || !in)
 return fnvNull;
 if (length < 0)
 return fnvBadParam;
 switch (ctx->Computed) {
 case FNVinited+FNV1024state:
 ctx->Computed = FNVcomputed+FNV1024state;
 break;
 case FNVcomputed+FNV1024state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV1024size/2; ++i)
 temp[i] = ctx->Hash[i]; // copy into temp
 for (; length > 0; length--) {
 /* temp = FNV1024prime * (temp ^ *in++); */
 temp[FNV1024size/2-1] ^= *in++;
 for (i=0; i<22; ++i)
 temp2[21-i] = temp[FNV1024size/2-1-i] << FNV1024shift;
 for (i=0; i<FNV1024size/2; ++i)
 temp[i] *= FNV1024primeX;
 for (i=0; i<22; ++i)
 temp[i] += temp2[i];
 for (i=FNV1024size/2-1; i>0; --i) {
 temp[i-1] += temp[i] >> 16; // propagate carries

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 81

 temp[i] &= 0xFFFF;
 }
 }
 for (i=0; i<FNV1024size/2; ++i)
 ctx->Hash[i] = temp[i]; // store back into hash
 return fnvSuccess;
} /* end FNV1024blockin */

/* hash in a zero-terminated string not including the zero (32-bit)
 **/
int FNV1024stringin (FNV1024context * const ctx, const char *in) {
 uint32_t temp[FNV1024size/2];
 uint32_t temp2[22];
 int i;
 uint8_t ch;

 if (!ctx || !in)
 return fnvNull;
 switch (ctx->Computed) {
 case FNVinited+FNV1024state:
 ctx->Computed = FNVcomputed+FNV1024state;
 break;
 case FNVcomputed+FNV1024state:
 break;
 default:
 return fnvStateError;
 }
 for (i=0; i<FNV1024size/2; ++i)
 temp[i] = ctx->Hash[i]; // copy into temp
 while ((ch = (uint8_t)*in++)) {
 /* temp = FNV1024prime * (temp ^ *in++); */
 temp[FNV1024size/2-1] ^= ch;
 for (i=0; i<22; ++i)
 temp2[21-i] = temp[FNV1024size/2-1-i] << FNV1024shift;
 for (i=0; i<FNV1024size/2; ++i)
 temp[i] *= FNV1024primeX;
 for (i=0; i<22; ++i)
 temp[i] += temp2[i];
 for (i=FNV1024size/2-1; i>0; --i) {
 temp[i-1] += temp[i] >> 16; // propagate carries
 temp[i] &= 0xFFFF;
 }
 }
 for (i=0; i<FNV1024size/2; ++i)
 ctx->Hash[i] = temp[i]; // store back into hash
 return fnvSuccess;
} /* end FNV1024stringin */

/* return hash (32-bit)
 **/
int FNV1024result (FNV1024context * const ctx,
 uint8_t out[FNV1024size]) {
 if (!ctx || !out)
 return fnvNull;
 if (ctx->Computed != FNVcomputed+FNV1024state)
 return fnvStateError;
 for (int i=0; i<FNV1024size/2; ++i) {
 out[2*i] = ctx->Hash[i] >> 8;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 82

 out[2*i+1] = ctx->Hash[i];
 ctx->Hash[i] = 0;
 }
 ctx->Computed = FNVemptied+FNV1024state;
 return fnvSuccess;
} /* end FNV1024result */

#endif /* FNV_64bitIntegers */
//**//
// END VERSION FOR WHEN YOU ONLY HAVE 32-BIT ARITHMETIC
//**//

<CODE ENDS>

8.3. FNV Test Code
Below is source code for a test driver with a command line interface as documented in Section
8.1.3. By default, with no command line arguments, it runs tests of all FNV lengths.

<CODE BEGINS> file "main.c"

//************************* Main.c **************************//
//*************** See RFC 9923 for details. *****************//
/* Copyright (c) 2016-2025 IETF Trust and the persons
 * identified as authors of the code. All rights reserved.
 * See fnv-private.h for terms of use and redistribution.
 */

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>

/* To do a thorough test, you need to run with
 * FNV_64bitIntegers defined and with it undefined
 */
#include "FNVconfig.h"
#include "fnv-private.h"
#include "FNV32.h"
#include "FNV64.h"
#include "FNV128.h"
#include "FNV256.h"
#include "FNV512.h"
#include "FNV1024.h"

/* global variables */
char *funcName = "funcName not set?";
const char *errteststring = "foo";
int Terr = -1; /* Total errors */
int verbose = 0; /* Verbose flag */
enum { FNV32selected = 0, FNV64selected, FNV128selected,
 FNV256selected, FNV512selected, FNV1024selected,
 FNVnone = -1 } selected = FNVnone;

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 83

#define NTestBytes 3
const uint8_t errtestbytes[NTestBytes] = { (uint8_t)1,
 (uint8_t)2, (uint8_t)3 };

// initial teststring is null, so initial result is offset_basis
const char *teststring[] = {
 "",
 "a",
 "foobar",
 "Hello!\x01\xFF\xED"
};
#define NTstrings (sizeof(teststring)/sizeof(char *))

// due to FNV-1 versus FNV1a, XOR in final backslash separately
const char BasisString[] = "chongo <Landon Curt Noll> /\\../";
FNV32context e32Context;
uint32_t eUint32 = 42;
#ifdef FNV_64bitIntegers
 uint64_t eUint64 = 42;
#endif
FNV64context e64Context;
FNV128context e128Context;
FNV256context e256Context;
FNV512context e512Context;
FNV1024context e1024Context;
uint8_t hash[FNV1024size]; /* largest size needed */
uint8_t FakeBasis[FNV1024size];
uint8_t ZeroBasis[FNV1024size];
char tempFileNameTemplate[] = "tmp.XXXXXXXXXX";
const char *tempFileName = 0;

//**
// local prototypes in alphabetical order
//**
void CommonTest (void);
void ErrTestReport (void);
int find_selected(const char *optarg);
void HexPrint (int count, const uint8_t *ptr);
void TestAll (void);
void Test32 (void);
void Test64 (void);
void Test128 (void);
void Test256 (void);
void Test512 (void);
void Test1024 (void);
void TestNValue (const char *subfunc, // test calculated value
 const char *string,
 int N, // size
 const uint8_t *was,
 const uint8_t should[N]);
int TestR (const char *,
 int expect,
 int actual); // test return code
void usage(const char *argv0); // print help message
void ValueTestReport (void); // print test results

#ifndef FNV_64bitIntegers
undef uint64

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 84

define uint64_t no_64_bit_integers
#endif /* FNV_64bitIntegers */

// array of function pointers, etc.
struct { // sometimes indexed into by the enum variable "selected"
 int length;
 void (*Testfunc)(void);
 int (*Stringfunc)(const char *, uint8_t *); // string
 int (*Blockfunc)(const void *, long int, uint8_t *); // block
 int (*Filefunc)(const char *, uint8_t *); // file
 int (*StringBasisfunc)
 (const char *, uint8_t *, const uint8_t *); // stringBasis
 int (*BlockBasisfunc)
 (const void *, long int, uint8_t *,
 const uint8_t *); // blockBasis
 int (*FileBasisfunc)
 (const char *, uint8_t *, const uint8_t *); // fileBlock
} funcmap[] = { // valid sizes
 { 32, Test32, FNV32string, FNV32block, FNV32file,
 FNV32stringBasis, FNV32blockBasis, FNV32fileBasis },
 { 64, Test64, FNV64string, FNV64block, FNV64file,
 FNV64stringBasis, FNV64blockBasis, FNV64fileBasis },
 { 128, Test128, FNV128string, FNV128block, FNV128file,
 FNV128stringBasis, FNV128blockBasis, FNV128fileBasis },
 { 256, Test256, FNV256string, FNV256block, FNV256file,
 FNV256stringBasis, FNV256blockBasis, FNV256fileBasis },
 { 512, Test512, FNV512string, FNV512block, FNV512file,
 FNV512stringBasis, FNV512blockBasis, FNV512fileBasis },
 { 1024, Test1024, FNV1024string, FNV1024block, FNV1024file,
 FNV1024stringBasis, FNV1024blockBasis, FNV1024fileBasis },
 { 0, Test32, FNV32string, FNV32block, FNV32file } // fence post
};

//**
// main
//**
int main(int argc, const char **argv) {
 int option; // command line option letter
 int i;
 uint16_t endianness = 5*256 + 11;

 mkstemp(tempFileNameTemplate);
 tempFileName = tempFileNameTemplate;

 if (((uint8_t *)&endianness)[0] != 11)
 printf ("Coded for little endian but computer seems\n"
 " to be big endian! Multi-byte integer results\n"
 " may be incorrect!\n");
 for (i=0; i<FNV1024size; ++i) {// initialize a couple of arrays
 ZeroBasis[i] = 0;
 FakeBasis[i] = (uint8_t)i;
 }
 if (argc == 1) { // if no arguments
 TestAll();
 if (tempFileName)
 unlink(tempFileName);
 exit(0);
 }

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 85

// process command line options
//***
 while ((option = getopt(argc, (char *const *)argv, ":af:ht:u:v"))
 != -1) {
 if (verbose)
 printf ("Got option %c\n", option);
 switch (option) {
 case 'a': // run all tests
 TestAll();
 break;
 case 'f': // followed by name of file to hash
 if (selected == FNVnone) {
 printf ("No hash size selected.\n");
 break;
 }
 printf ("FNV-%i Hash of contents of file '%s':\n",
 funcmap[selected].length, optarg);
 if (funcmap[selected].Filefunc (optarg, hash))
 printf ("Hashing file '%s' fails: %s.\n",
 optarg, strerror(errno));
 else
 HexPrint (funcmap[selected].length/8, hash);
 printf ("\n");
 break;
 case 'h': // help
 usage(argv[0]);
 break;
 case 't': // followed by size of FNV to test, 0->all
 selected = find_selected(optarg);
 if (selected == FNVnone)
 printf ("Bad argument to option -t\n"
 "Valid sizes are 32, 64, 128,"
 " 256, 512, and 1024\n");
 else
 funcmap[selected].Testfunc(); // invoke test
 break;
 case 'u': // followed by size of FNV to use
 selected = find_selected(optarg);
 if (selected == FNVnone)
 printf ("Bad argument to option -u\n"
 "Valid sizes are 32, 64, 128,"
 " 256, 512, and 1024\n");
 break;
 case 'v': // toggle Verbose flag
 if ((verbose ^= 1)) {
 printf ("Verbose on.\n");
#ifdef FNV_64bitIntegers
 printf ("Has 64-bit integers. ");
#else
 printf ("Does not have 64-bit integers. ");
#endif
 // also tests the TestR function
 funcName = "Testing TestR";
 TestR ("should fail", 1, 2);
 TestR ("should not have failed", 3, 3);
 }
 else

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 86

 printf ("Verbose off.\n");
 break;
 case '?': //
 printf ("Unknown option %c\n", optopt);
 usage(argv[0]);
 return 1;
 } /* end switch */
 } /* end while */
 if ((option == -1) && verbose)
 printf ("No more options.\n");

// Through all the options, now, if a size is set, encrypt any
// other tokens on the command line
//**
 for (i = optind; i < argc; ++i) {
 int rc; // return code

 if (selected == FNVnone) {
 printf ("No hash size selected.\n");
 break; // out of for
 }
 rc = funcmap[selected].Stringfunc(argv[i], hash);
 if (rc)
 printf ("FNV-%i of '%s' returns error %i\n",
 funcmap[selected].length,
 argv[i], rc);
 else {
 printf ("FNV-%i of '%s' is ",
 funcmap[selected].length, argv[i]);
 HexPrint (funcmap[selected].length/8, hash);
 printf ("\n");
 }
 }
 if (tempFileName)
 unlink(tempFileName);
 return 0;
} /* end main */

/* Write to a temp file
 **/
const char *WriteTemp(const char *str, long int iLen) {
 FILE *fp = fopen(tempFileName, "w");
 if (!fp) {
 printf ("Cannot open tempfile: %s: %s\n",
 tempFileName, strerror(errno));
 return 0;
 }
 long int ret = fwrite(str, 1, iLen, fp);
 fclose(fp);
 if (ret != iLen) {
 printf ("Cannot write tempfile: %s: %s\n",
 tempFileName, strerror(errno));
 return 0;
 }
 return tempFileName;
}

//**

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 87

// Test status return code
//**
int TestR (const char *name, int expect, int actual) {
 if (expect != actual) {
 printf ("%s %s returned %i instead of %i.\n",
 funcName, name, actual, expect);
 ++Terr; /* increment error count */
 }
 return actual;
} /* end TestR */

//**
// General byte vector return value test
//**
void TestNValue (const char *subfunc,
 const char *string, // usually what was hashed
 int N,
 const uint8_t was[N],
 const uint8_t should[N]) {
 if (memcmp (was, should, N) != 0) {
 ++Terr;
 printf ("%s %s of '%s'",
 funcName, subfunc, string);
 printf (" computed ");
 HexPrint (N, was);
 printf (", expected ");
 HexPrint (N, should);
 printf (".\n");
 }
 else if (verbose) {
 printf ("%s %s of '%s' computed ",
 funcName, subfunc, string);
 HexPrint (N, was);
 printf (" as expected.\n");
 }
} /* end TestNValue */

//**
// Reports on status/value returns
//**
void ErrTestReport (void) {
 if (Terr)
 printf ("%s test of error checks failed %i times.\n",
 funcName, Terr);
 else if (verbose)
 printf ("%s test of error checks passed.\n",
 funcName);
} /* end ErrTestReport */

void ValueTestReport (void) {
 if (Terr)
 printf ("%s test of return values failed %i times.\n",
 funcName, Terr);
 else
 printf ("%s test of return values passed.\n", funcName);
} /* end ValueTestReport */

//**

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 88

// Verify the size of hash as a command line option argument
// and return the index in funcmap[], -1 if not found.
//**
int find_selected(const char *optarg) {
 int argval, count;

 count = sscanf (optarg, "%i", &argval);
 if (count > 0) {
 int i;
 for (i = 0; funcmap[i].length; ++i) {
 if (funcmap[i].length == argval) {
 return i;
 } /* end if */
 } /* end for */
 }
 return FNVnone;
} /* end find_selected */

//**
// Print some bytes as hexadecimal
//**
void HexPrint(int count, const uint8_t *ptr) {
 for (int i = 0; i < count; ++i)
 printf ("%02X", ptr[i]);
} /* end HexPrint */

//**
// Test all sizes
//**
void TestAll (void) {
 for (int i=0; funcmap[i].length; ++i)
 funcmap[i].Testfunc ();
} /* end TestAll */

//**
// Common error check tests
//**
void CommonTest (void) {
 TestR ("string1b", fnvNull,
 funcmap[selected].Stringfunc ((char *)0, hash));
 TestR ("string2b", fnvNull,
 funcmap[selected].Stringfunc (errteststring,
 (uint8_t *)0));
 TestR ("strBasis1b", fnvNull,
 funcmap[selected].StringBasisfunc ((char *)0,
 hash, FakeBasis));
 TestR ("strBasis2b", fnvNull,
 funcmap[selected].StringBasisfunc (errteststring,
 (uint8_t *)0, FakeBasis));
 TestR ("strBasis3b", fnvNull,
 funcmap[selected].StringBasisfunc (errteststring,
 hash, (uint8_t *)0));
 TestR ("blk1", fnvNull,
 funcmap[selected].Blockfunc ((uint8_t *)0, 1, hash));
 TestR ("blk2", fnvBadParam,
 funcmap[selected].Blockfunc (errtestbytes, -1, hash));
 TestR ("blk3", fnvNull,
 funcmap[selected].Blockfunc (errtestbytes, 1,

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 89

 (uint8_t *)0));
 TestR ("blk1b", fnvNull,
 funcmap[selected].BlockBasisfunc ((uint8_t *)0, 1,
 hash, FakeBasis));
 TestR ("blk2b", fnvBadParam,
 funcmap[selected].BlockBasisfunc (errtestbytes, -1,
 hash, FakeBasis));
 TestR ("blk3b", fnvNull,
 funcmap[selected].BlockBasisfunc (errtestbytes, 1,
 (uint8_t *)0, FakeBasis));
 TestR ("blk4b", fnvNull,
 funcmap[selected].BlockBasisfunc (errtestbytes, 1,
 hash, (uint8_t *)0));
 TestR ("file1", fnvNull,
 funcmap[selected].Filefunc ((char *)0, hash));
 TestR ("file2", fnvNull,
 funcmap[selected].Filefunc ("foo.txt", (uint8_t *)0));
 TestR ("file1b", fnvNull,
 funcmap[selected].FileBasisfunc ((char *)0, hash,
 FakeBasis));
 TestR ("file2b", fnvNull,
 funcmap[selected].FileBasisfunc ("foo.txt", (uint8_t *)0,
 FakeBasis));
 TestR ("file3b", fnvNull,
 funcmap[selected].FileBasisfunc ("foo.txt", hash,
 (uint8_t *)0));
} /* end CommonTest */

//**
// Print command line help
//**
void usage(const char *argv0) {
 printf (
 "%s [-a] [-t nnn] [-u nnn] [-v] [-f filename] [token ...]\n"
 " -a = run all tests\n"
 " -f filename = hash file contents\n"
 " -h = help, print this message\n"
 " -t nnn = Test hash size nnn\n"
 " -u nnn = Use hash size nnn\n"
 " -v = toggle Verbose flag\n"
 " Each token is hashed.\n", argv0);
} /* end usage */

//**
// Test Macros
//**

// test for return values
//************************
#define TestInit(INIT,CTX,CTXT) \
TestR ("init1", fnvSuccess, INIT (&CTX)); \
TestR ("init2", fnvNull, INIT ((CTXT *)0));

#define TestInitBasis(INITB,CTX,CTXT) \
TestR ("initB1", fnvSuccess, INITB (&CTX, FakeBasis));
TestR ("initB2", fnvNull, INITB ((CTXT *)0, hash)); \
TestR ("initB3", fnvNull, INITB (&CTX, (uint8_t *)0));

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 90

#define TestBlockin(BLKIN,CTX,CTXT) \
TestR ("blockin1", fnvNull, \
 BLKIN ((CTXT *)0, errtestbytes, NTestBytes)); \
TestR ("blockin2", fnvNull, \
 BLKIN (&CTX, (uint8_t *)0, NTestBytes)); \
TestR ("blockin3", fnvBadParam, \
 BLKIN (&CTX, errtestbytes, -1)); \
TestR ("blockin4", fnvStateError, \
 BLKIN (&CTX, errtestbytes, NTestBytes));

#define TestStringin(STRIN,CTX,CTXT) \
TestR ("stringin1", fnvNull, \
 STRIN ((CTXT *)0, errteststring)); \
TestR ("stringin2", fnvNull, STRIN (&CTX, (char *)0)); \
TestR ("stringin3", fnvStateError, \
 STRIN (&CTX, errteststring));

#define TestFilein(FLIN,CTX,CTXT) \
TestR ("file1", fnvNull, FLIN ((CTXT *)0, errteststring)); \
TestR ("file2", fnvNull, FLIN (&CTX, (char *)0)); \
TestR ("file3", fnvStateError, \
 FLIN (&CTX, errteststring));

#define TestResult(RSLT,CTX,CTXT) \
TestR ("result1", fnvNull, RSLT ((CTXT *)0, hash)); \
TestR ("result2", fnvNull, RSLT (&CTX, (uint8_t *)0)); \
TestR ("result3", fnvStateError, \
 FNV128result (&e128Context, hash));

// test return values for INT versions including non-std basis
//***
#define TestINT(STRINT,STRINTB,BLKINT,BLKINTB,INITINTB, \
 INTV,INTVT,ctxT) \
TestR ("string1i", fnvNull, STRINT ((char *)0, &INTV)); \
TestR ("string2i", fnvNull, \
 STRINT (errteststring, (INTVT *)0)); \
TestR ("string3i", fnvNull, STRINTB ((char *)0, &INTV, INTV));\
TestR ("string4i", fnvNull, \
 STRINTB (errteststring, (INTVT *)0, INTV)); \
TestR ("block1i", fnvNull, BLKINT ((uint8_t *)0, 1, &INTV));\
TestR ("block2i", fnvBadParam, \
 BLKINT (errtestbytes, -1, &INTV)); \
TestR ("block3i", fnvNull, \
 BLKINT (errtestbytes, 1, (INTVT *)0)); \
TestR ("block4i", fnvNull, \
 BLKINTB ((uint8_t *)0, 1, &INTV, INTV)); \
TestR ("block5i", fnvBadParam, \
 BLKINTB (errtestbytes, -1, &INTV, INTV)); \
TestR ("block6i", fnvNull, \
 BLKINTB (errtestbytes, 1, (INTVT *)0, INTV)); \
TestR ("initBasis1i", fnvNull, INITINTB ((ctxT *)0, INTV));

#define TestINTrf(RSLTINT,FILEINT,FILEINTB, \
 ctx,ctxT,INTV,INTVT) \
TestR ("result1i", fnvNull, RSLTINT ((ctxT *)0, &INTV)); \
TestR ("result2i", fnvNull, RSLTINT (&ctx, (INTVT *)0)); \
TestR ("result3i", fnvStateError, RSLTINT (&ctx, &INTV)); \
TestR ("file1i", fnvNull, FILEINT ((char *)0, &INTV)); \

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 91

TestR ("file2i", fnvNull, FILEINT ("foo.txt", (INTVT *)0)); \
TestR ("file3i", fnvNull, FILEINTB ((char *)0, &INTV, INTV));\
TestR ("file4i", fnvNull, \
 FILEINTB ("foo.txt", (INTVT *)0, INTV));

// test to calculate standard basis from basis zero FNV-1
// depends on zero basis making the initial multiply a no-op
//*****************************
#define BasisZero(STRING,SIZ,VALUE) \
err = TestR ("fnv0s", fnvSuccess, \
 STRING (BasisString, hash, ZeroBasis)); \
if (err == fnvSuccess) { \
 hash[SIZ-1] ^= '\\'; \
 TestNValue ("fnv0sv", BasisString, SIZ, hash, VALUE[0]); \
}
#define BasisINTZero(STRINT,SIZ,VALUE,INTV,INTVT) \
err = TestR ("fnv0s", fnvSuccess, \
 STRINT (BasisString, &INTV, (INTVT) 0)); \
if (err == fnvSuccess) { \
 INTV ^= '\\'; \
 TestNValue ("fnv0svi", BasisString, SIZ, \
 (uint8_t *)&INTV, (uint8_t *)&VALUE[0]); \
}

// test for return hash values
//*****************************
#define TestSTRBLKHash(STR,BLK,SVAL,BVAL,SZ) \
if (TestR ("stringa", fnvSuccess, \
 STR (teststring[i], hash))) \
 printf (" Index = %i\n", i); \
else \
 TestNValue ("stringb", teststring[i], SZ, \
 hash, (uint8_t *)&SVAL[i]); \
if (TestR ("blocka", fnvSuccess, BLK (teststring[i], \
 (long int)(strlen(teststring[i])+1), hash))) \
 printf (" Index = %i\n", i); \
else \
 TestNValue ("blockb", teststring[i], SZ, \
 hash, (uint8_t *)&BVAL[i]);

// Test incremental functions
//****************************
#define IncrHash(INIT,CTX,BLK,RSLT,INITB,STR,SZ,SVAL) \
err = TestR ("inita", fnvSuccess, INIT (&CTX)); \
if (err) break; \
iLen = strlen (teststring[i]); \
err = TestR ("blockina", fnvSuccess, \
 BLK (&CTX, (uint8_t *)teststring[i], iLen/2)); \
if (err) break; \
if (i & 1) { \
 err = TestR ("basisra", fnvSuccess, RSLT (&CTX, hash)); \
 if (err) break; \
 err = TestR ("basisia", fnvSuccess, INITB (&CTX, hash));\
 if (err) break; \
} \
err = TestR ("stringina", fnvSuccess, STR (&CTX, \
 teststring[i] + iLen/2)); \
if (err) break; \

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 92

err = TestR ("resulta", fnvSuccess, RSLT (&CTX, hash)); \
if (err) break; \
TestNValue ("incrementala", teststring[i], SZ, \
 hash, (uint8_t *)&SVAL[i]);

// test file hash
//*****************************
#define TestFILEHash(FILE,BVAL,SZ) \
err = TestR ("fileafh", fnvSuccess, \
 FILE (WriteTemp(teststring[i], iLen), \
 hash)); \
if (err) break; \
TestNValue ("filebfh", teststring[i], SZ, hash, \
 (uint8_t *)&BVAL[i]);

//**
// FNV32 Test
//**
void Test32 (void) {
 long int iLen;
 uint32_t FNV32svalues[NTstrings] = {
 0x811c9dc5, 0xe40c292c, 0xbf9cf968, 0xfd9d3881 };
 uint32_t FNV32bvalues[NTstrings] = {
 0x050c5d1f, 0x2b24d044, 0x0c1c9eb8, 0xbf7ff313 };
 int i, err;
 uint8_t FNV32basisT[FNV32size] = {0xC5, 0x9D, 0x1C, 0x81 };

 funcName = "FNV-32";
 selected = FNV32selected;
/* test error checks */
 Terr = 0;
 TestInit (FNV32init, e32Context, FNV32context)
 TestInitBasis (FNV32initBasis, e32Context, FNV32context)
 CommonTest();
 TestINT (FNV32INTstring, FNV32INTstringBasis, FNV32INTblock,
 FNV32INTblockBasis, FNV32INTinitBasis, eUint32,
 uint32_t, FNV32context)
 e32Context.Computed = FNVclobber+FNV32state;
 TestBlockin (FNV32blockin, e32Context, FNV32context)
 TestStringin (FNV32stringin, e32Context, FNV32context)
 TestFilein (FNV32filein, e32Context, FNV32context)
 TestResult (FNV32result, e32Context, FNV32context)
 TestINTrf(FNV32INTresult,FNV32INTfile,FNV32INTfileBasis,
 e32Context,FNV32context,eUint32,uint32_t)
 ErrTestReport ();
 Terr = 0;
 err = TestR ("fnv0s", fnvSuccess,
 FNV32stringBasis (BasisString, hash, ZeroBasis));
 if (err == fnvSuccess) {
 hash[0] ^= '\\';
 TestNValue ("fnv0sv32", BasisString, FNV32size,
 hash, (uint8_t *)&FNV32svalues[0]);
 }
 BasisINTZero (FNV32INTstringBasis,FNV32size,FNV32svalues, \
 eUint32,uint32_t)
 for (i = 0; i < NTstrings; ++i) {
/* test actual results int */
 err = TestR ("stringai", fnvSuccess,

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 93

 FNV32INTstring (teststring[i], &eUint32));
 if (err == fnvSuccess)
 TestNValue ("stringbi", teststring[i], FNV32size,
 (uint8_t *)&eUint32,
 (uint8_t *)&FNV32svalues[i]);
 err = TestR ("blockai", fnvSuccess,
 FNV32INTblock ((uint8_t *)teststring[i],
 (unsigned long)(strlen(teststring[i])+1),
 &eUint32));
 if (err == fnvSuccess)
 TestNValue ("blockbi", teststring[i], FNV32size,
 (uint8_t *)&eUint32,
 (uint8_t *)&FNV32bvalues[i]);
/* test actual results byte */
 TestSTRBLKHash (FNV32string, FNV32block, FNV32svalues,
 FNV32bvalues, FNV32size)
/* now try testing the incremental stuff */
 IncrHash (FNV32init, e32Context, FNV32blockin, FNV32result,
 FNV32initBasis, FNV32stringin, FNV32size, FNV32svalues)
/* now try testing the incremental stuff int */
 err = TestR ("initai", fnvSuccess,
 FNV32init (&e32Context));
 if (err) break;
 iLen = strlen (teststring[i]);
 err = TestR ("blockinai", fnvSuccess,
 FNV32blockin (&e32Context,
 (uint8_t *)teststring[i],
 iLen/2));
 if (err) break;
 err = TestR ("stringinai", fnvSuccess,
 FNV32stringin (&e32Context,
 teststring[i] + iLen/2));
 if (err) break;
 err = TestR ("resultai", fnvSuccess,
 FNV32INTresult (&e32Context, &eUint32));
 if (err) break;
 TestNValue ("incrementalai", teststring[i], FNV32size,
 (uint8_t *)&eUint32,
 (uint8_t *)&FNV32svalues[i]);
/* now try testing the incremental stuff byte basis */
 err = TestR ("initab", fnvSuccess,
 FNV32initBasis (&e32Context,
 (uint8_t *)&FNV32basisT));
 if (err) break;
 iLen = strlen (teststring[i]);
 err = TestR ("blockinab", fnvSuccess,
 FNV32blockin (&e32Context,
 (uint8_t *)teststring[i],
 iLen/2));
 if (err) break;
 err = TestR ("stringinab", fnvSuccess,
 FNV32stringin (&e32Context,
 teststring[i] + iLen/2));
 if (err) break;
 err = TestR ("resultab", fnvSuccess,
 FNV32result (&e32Context, hash));
 if (err) break;
 TestNValue ("incrementala", teststring[i], FNV32size,

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 94

 hash, (uint8_t *)&FNV32svalues[i]);
/* now try testing file hash int */
 err = TestR ("fileafi", fnvSuccess,
 FNV32INTfile (WriteTemp(teststring[i], iLen),
 &eUint32));
 if (err) break;
 TestNValue ("filebfi", teststring[i], FNV32size,
 (uint8_t *)&eUint32,
 (uint8_t *)&FNV32svalues[i]);

/* now try testing file hash byte */
 TestFILEHash (FNV32file, FNV32svalues, FNV32size)
 } // end for i
 ValueTestReport ();
} /* end Test32 */

#ifdef FNV_64bitIntegers
//**
// Code for testing FNV64 using 64-bit integers
//**
void Test64 (void) { /* with 64-bit integers */
 long int iLen;
 uint64_t FNV64basisT = FNV64basis;
 uint64_t FNV64svalues[NTstrings] = {
 0xcbf29ce484222325, 0xaf63dc4c8601ec8c, 0x85944171f73967e8,
 0xbd51ea7094ee6fa1 };
 uint64_t FNV64bvalues[NTstrings] = {
 0xaf63bd4c8601b7df, 0x089be207b544f1e4, 0x34531ca7168b8f38,
 0xa0a0fe4d1127ae93 };
 int i, err;

 funcName = "FNV-64";
 selected = FNV64selected;
/* test error checks */
 Terr = 0;
 TestInit (FNV64init, e64Context, FNV64context)
 TestInitBasis (FNV64initBasis, e64Context, FNV64context)
 CommonTest();
 TestINT(FNV64INTstring,FNV64INTstringBasis,FNV64INTblock,
 FNV64INTblockBasis,FNV64INTinitBasis,
 eUint64,uint64_t,FNV64context)
 e64Context.Computed = FNVclobber+FNV64state;
 TestBlockin (FNV64blockin, e64Context, FNV64context)
 TestStringin (FNV64stringin, e64Context, FNV64context)
 TestFilein (FNV64filein, e64Context, FNV64context)
 TestResult (FNV64result, e64Context, FNV64context)
 TestINTrf(FNV64INTresult,FNV64INTfile,FNV64INTfileBasis,
 e64Context,FNV64context,eUint64,uint64_t)
 ErrTestReport ();
/* test actual results int */
 Terr = 0;
 err = TestR ("fnv0s", fnvSuccess,
 FNV64stringBasis (BasisString, hash, ZeroBasis));
 if (err == fnvSuccess) {
 hash[0] ^= '\\';
 TestNValue ("fnv0sv64", BasisString, FNV64size,
 hash, (uint8_t *)&FNV64svalues[0]);
 }

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 95

 BasisINTZero (FNV64INTstringBasis,FNV64size,FNV64svalues, \
 eUint64,uint64_t)
 for (i = 0; i < NTstrings; ++i) {
/* test actual results int */
 err = TestR ("stringai", fnvSuccess,
 FNV64INTstring (teststring[i], &eUint64));
 if (err == fnvSuccess)
 TestNValue ("stringbi", teststring[i], FNV64size,
 (uint8_t *)&eUint64,
 (uint8_t *)&FNV64svalues[i]);
 err = TestR ("blockai", fnvSuccess,
 FNV64INTblock ((uint8_t *)teststring[i],
 (unsigned long)(strlen(teststring[i])+1),
 &eUint64));
 if (err == fnvSuccess)
 TestNValue ("blockbi", teststring[i], FNV64size,
 (uint8_t *)&eUint64,
 (uint8_t *)&FNV64bvalues[i]);
/* test actual results byte */
 TestSTRBLKHash (FNV64string, FNV64block, FNV64svalues,
 FNV64bvalues, FNV64size)
/* now try testing the incremental stuff */
 IncrHash (FNV64init, e64Context, FNV64blockin, FNV64result,
 FNV64initBasis, FNV64stringin, FNV64size, FNV64svalues)
/* now try testing the incremental stuff int */
 err = TestR ("initai", fnvSuccess,
 FNV64init (&e64Context));
 if (err) break;
 iLen = strlen (teststring[i]);
 err = TestR ("blockinai", fnvSuccess,
 FNV64blockin (&e64Context,
 (uint8_t *)teststring[i],
 iLen/2));
 if (err) break;
 err = TestR ("stringinai", fnvSuccess,
 FNV64stringin (&e64Context,
 teststring[i] + iLen/2));
 if (err) break;
 err = TestR ("resultai", fnvSuccess,
 FNV64INTresult (&e64Context, &eUint64));
 if (err) break;
 TestNValue ("incrementalai", teststring[i], FNV64size,
 (uint8_t *)&eUint64,
 (uint8_t *)&FNV64svalues[i]);
/* now try testing the incremental stuff byte basis */
 err = TestR ("initab", fnvSuccess,
 FNV64initBasis (&e64Context,
 (uint8_t *)&FNV64basisT));
 if (err) break;
 iLen = strlen (teststring[i]);
 err = TestR ("blockinab", fnvSuccess,
 FNV64blockin (&e64Context,
 (uint8_t *)teststring[i],
 iLen/2));
 if (err) break;
 err = TestR ("stringinab", fnvSuccess,
 FNV64stringin (&e64Context,
 teststring[i] + iLen/2));

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 96

 if (err) break;
 err = TestR ("resultab", fnvSuccess,
 FNV64result (&e64Context, hash));
 if (err) break;
 TestNValue ("incrementala", teststring[i], FNV64size,
 hash, (uint8_t *)&FNV64svalues[i]);
/* now try testing file int */
 err = TestR ("fileafi", fnvSuccess,
 FNV64INTfile (WriteTemp(teststring[i], iLen),
 &eUint64));
 if (err) break;
 TestNValue ("filebfi", teststring[i], FNV64size,
 (uint8_t *)&eUint64,
 (uint8_t *)&FNV64svalues[i]);
/* now try testing file hash */
 TestFILEHash(FNV64file,FNV64svalues,FNV64size)
 }
 ValueTestReport ();
} /* end Test64 */

#else

//**
// Code for testing FNV64 without 64-bit integers
//**
void Test64 (void) { /* without 64-bit integers */
 int i, err;
 long int iLen;
 uint8_t FNV64svalues[NTstrings][FNV64size] = {
 { 0xcb, 0xf2, 0x9c, 0xe4, 0x84, 0x22, 0x23, 0x25 },
 { 0xaf, 0x63, 0xdc, 0x4c, 0x86, 0x01, 0xec, 0x8c },
 { 0x85, 0x94, 0x41, 0x71, 0xf7, 0x39, 0x67, 0xe8 },
 { 0xbd, 0x51, 0xea, 0x70, 0x94, 0xee, 0x6f, 0xa1 } };
 uint8_t FNV64bvalues[NTstrings][FNV64size] = {
 { 0xaf, 0x63, 0xbd, 0x4c, 0x86, 0x01, 0xb7, 0xdf },
 { 0x08, 0x9b, 0xe2, 0x07, 0xb5, 0x44, 0xf1, 0xe4 },
 { 0x34, 0x53, 0x1c, 0xa7, 0x16, 0x8b, 0x8f, 0x38 },
 { 0xa0, 0xa0, 0xfe, 0x4d, 0x11, 0x27, 0xae, 0x93 } };

 funcName = "FNV-64";
 selected = FNV64selected;
/* test error checks */
 Terr = 0;
 TestR ("init1", fnvSuccess, FNV64init (&e64Context));
 CommonTest();
 TestInit (FNV64init, e64Context, FNV64context)
 TestInitBasis (FNV64initBasis, e64Context, FNV64context)
 e64Context.Computed = FNVclobber+FNV64state;
 TestBlockin (FNV64blockin, e64Context, FNV64context)
 TestStringin (FNV64stringin, e64Context, FNV64context)
 TestFilein (FNV64filein, e64Context, FNV64context)
 TestResult (FNV64result, e64Context, FNV64context)
 ErrTestReport ();
/* test actual results */
 Terr = 0;
 BasisZero(FNV64stringBasis,FNV64size,FNV64svalues)
 for (i = 0; i < NTstrings; ++i) {
 TestSTRBLKHash (FNV64string, FNV64block,

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 97

 FNV64svalues, FNV64bvalues, FNV64size)
/* try testing the incremental stuff */
 IncrHash(FNV64init,e64Context,FNV64blockin,FNV64result,
 FNV64initBasis,FNV64stringin,FNV64size,FNV64svalues)
/* now try testing file hash */
 TestFILEHash(FNV64file,FNV64svalues,FNV64size)
 }
 ValueTestReport ();
} /* end Test64 */
#endif /* FNV_64bitIntegers */

//**
// Code for testing FNV128
//**
void Test128 (void) {
 int i, err;
 long int iLen;
 uint8_t FNV128svalues[NTstrings][FNV128size] = {
 { 0x6c, 0x62, 0x27, 0x2e, 0x07, 0xbb, 0x01, 0x42,
 0x62, 0xb8, 0x21, 0x75, 0x62, 0x95, 0xc5, 0x8d },
 { 0xd2, 0x28, 0xcb, 0x69, 0x6f, 0x1a, 0x8c, 0xaf,
 0x78, 0x91, 0x2b, 0x70, 0x4e, 0x4a, 0x89, 0x64 },
 { 0x34, 0x3e, 0x16, 0x62, 0x79, 0x3c, 0x64, 0xbf,
 0x6f, 0x0d, 0x35, 0x97, 0xba, 0x44, 0x6f, 0x18 },
 { 0x74, 0x20, 0x2c, 0x60, 0x0b, 0x05, 0x1c, 0x16,
 0x5b, 0x1a, 0xca, 0xfe, 0xd1, 0x0d, 0x14, 0x19 } };
 uint8_t FNV128bvalues[NTstrings][FNV128size] = {
 { 0xd2, 0x28, 0xcb, 0x69, 0x10, 0x1a, 0x8c, 0xaf,
 0x78, 0x91, 0x2b, 0x70, 0x4e, 0x4a, 0x14, 0x7f },
 { 0x08, 0x80, 0x95, 0x45, 0x19, 0xab, 0x1b, 0xe9,
 0x5a, 0xa0, 0x73, 0x30, 0x55, 0xb7, 0x0e, 0x0c },
 { 0xe0, 0x1f, 0xcf, 0x9a, 0x45, 0x4f, 0xf7, 0x8d,
 0xa5, 0x40, 0xf1, 0xb2, 0x32, 0x34, 0xb2, 0x88 },
 { 0xe2, 0x67, 0xa7, 0x41, 0xa8, 0x49, 0x8f, 0x82,
 0x19, 0xf7, 0xc7, 0x8b, 0x3b, 0x17, 0xba, 0xc3 } };

 funcName = "FNV-128";
 selected = FNV128selected;
/* test error checks */
 Terr = 0;
 TestInit (FNV128init, e128Context, FNV128context)
 TestInitBasis (FNV128initBasis, e128Context, FNV128context)
 CommonTest();
 e128Context.Computed = FNVclobber+FNV128state;
 TestBlockin (FNV128blockin, e128Context, FNV128context)
 TestStringin (FNV128stringin, e128Context, FNV128context)
 TestFilein (FNV128filein, e128Context, FNV128context)
 TestResult (FNV128result, e128Context, FNV128context)
 ErrTestReport ();
/* test actual results */
 Terr = 0;
 BasisZero(FNV128stringBasis,FNV128size,FNV128svalues)
 for (i = 0; i < NTstrings; ++i) {
 TestSTRBLKHash (FNV128string, FNV128block,
 FNV128svalues, FNV128bvalues, FNV128size)
/* try testing the incremental stuff */
 IncrHash(FNV128init,e128Context,FNV128blockin,FNV128result,
 FNV128initBasis,FNV128stringin,FNV128size,FNV128svalues)

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 98

/* now try testing file hash */
 TestFILEHash(FNV128file,FNV128svalues,FNV128size)
 }
 ValueTestReport ();
} /* end Test128 */

//**
// Code for testing FNV256
//**
void Test256 (void) {
 int i, err;
 long int iLen;
 uint8_t FNV256svalues[NTstrings][FNV256size] = {
 { 0xdd, 0x26, 0x8d, 0xbc, 0xaa, 0xc5, 0x50, 0x36,
 0x2d, 0x98, 0xc3, 0x84, 0xc4, 0xe5, 0x76, 0xcc,
 0xc8, 0xb1, 0x53, 0x68, 0x47, 0xb6, 0xbb, 0xb3,
 0x10, 0x23, 0xb4, 0xc8, 0xca, 0xee, 0x05, 0x35 },
 { 0x63, 0x32, 0x3f, 0xb0, 0xf3, 0x53, 0x03, 0xec,
 0x28, 0xdc, 0x75, 0x1d, 0x0a, 0x33, 0xbd, 0xfa,
 0x4d, 0xe6, 0xa9, 0x9b, 0x72, 0x66, 0x49, 0x4f,
 0x61, 0x83, 0xb2, 0x71, 0x68, 0x11, 0x63, 0x7c },
 { 0xb0, 0x55, 0xea, 0x2f, 0x30, 0x6c, 0xad, 0xad,
 0x4f, 0x0f, 0x81, 0xc0, 0x2d, 0x38, 0x89, 0xdc,
 0x32, 0x45, 0x3d, 0xad, 0x5a, 0xe3, 0x5b, 0x75,
 0x3b, 0xa1, 0xa9, 0x10, 0x84, 0xaf, 0x34, 0x28 },
 { 0x0c, 0x5a, 0x44, 0x40, 0x2c, 0x65, 0x38, 0xcf,
 0x98, 0xef, 0x20, 0xc4, 0x03, 0xa8, 0x0f, 0x65,
 0x9b, 0x80, 0xc9, 0xa5, 0xb0, 0x1a, 0x6a, 0x87,
 0x34, 0x2e, 0x26, 0x72, 0x64, 0x45, 0x67, 0xb1 } };
 uint8_t FNV256bvalues[NTstrings][FNV256size] = {
 { 0x63, 0x32, 0x3f, 0xb0, 0xf3, 0x53, 0x03, 0xec,
 0x28, 0xdc, 0x56, 0x1d, 0x0a, 0x33, 0xbd, 0xfa,
 0x4d, 0xe6, 0xa9, 0x9b, 0x72, 0x66, 0x49, 0x4f,
 0x61, 0x83, 0xb2, 0x71, 0x68, 0x11, 0x38, 0x7f },
 { 0xf4, 0xf7, 0xa1, 0xc2, 0xef, 0xd0, 0xe1, 0xe4,
 0xbb, 0x19, 0xe3, 0x45, 0x25, 0xc0, 0x72, 0x1a,
 0x06, 0xdd, 0x32, 0x8f, 0xa3, 0xd7, 0xa9, 0x14,
 0x39, 0xa0, 0x73, 0x43, 0x50, 0x1c, 0xf4, 0xf4 },
 { 0x6a, 0x7f, 0x34, 0xab, 0xc8, 0x5d, 0xe7, 0xd9,
 0x51, 0xb5, 0x15, 0x7e, 0xb5, 0x67, 0x2c, 0x59,
 0xb6, 0x04, 0x87, 0x65, 0x09, 0x47, 0xd3, 0x91,
 0xb1, 0x2d, 0x71, 0xe7, 0xfe, 0xf5, 0x53, 0x78 },
 { 0x3b, 0x97, 0x2c, 0x31, 0xbe, 0x84, 0x3a, 0x45,
 0x59, 0x02, 0x20, 0xd1, 0x12, 0x0d, 0x59, 0xe6,
 0xa3, 0x97, 0xa0, 0xc3, 0x34, 0xa1, 0xb9, 0x7d,
 0x5b, 0xff, 0x50, 0xa1, 0x0c, 0x3e, 0xca, 0x73 } };

 funcName = "FNV-256";
 selected = FNV256selected;
/* test error checks */
 Terr = 0;
 TestInit (FNV256init, e256Context, FNV256context)
 TestInitBasis (FNV256initBasis, e256Context, FNV256context)
 CommonTest();
 e256Context.Computed = FNVclobber+FNV256state;
 TestBlockin (FNV256blockin, e256Context, FNV256context)
 TestStringin (FNV256stringin, e256Context, FNV256context)
 TestFilein (FNV256filein, e256Context, FNV256context)

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 99

 TestResult (FNV256result, e256Context, FNV256context)
 ErrTestReport ();
/* test actual results */
 Terr = 0;
 BasisZero(FNV256stringBasis,FNV256size,FNV256svalues)
 for (i = 0; i < NTstrings; ++i) {
 TestSTRBLKHash (FNV256string, FNV256block,
 FNV256svalues, FNV256bvalues, FNV256size)
/* try testing the incremental stuff */
 IncrHash(FNV256init,e256Context,FNV256blockin,FNV256result,
 FNV256initBasis,FNV256stringin,FNV256size,FNV256svalues)
/* now try testing file hash */
 TestFILEHash(FNV256file,FNV256svalues,FNV256size)
 }
 ValueTestReport ();
} /* end Test256 */

//**
// Code for testing FNV512
//**
void Test512 (void) {
 int i, err;
 long int iLen;
 uint8_t FNV512svalues[NTstrings][FNV512size] = {
 { 0xb8, 0x6d, 0xb0, 0xb1, 0x17, 0x1f, 0x44, 0x16,
 0xdc, 0xa1, 0xe5, 0x0f, 0x30, 0x99, 0x90, 0xac,
 0xac, 0x87, 0xd0, 0x59, 0xc9, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d, 0x21,
 0xe9, 0x48, 0xf6, 0x8a, 0x34, 0xc1, 0x92, 0xf6,
 0x2e, 0xa7, 0x9b, 0xc9, 0x42, 0xdb, 0xe7, 0xce,
 0x18, 0x20, 0x36, 0x41, 0x5f, 0x56, 0xe3, 0x4b,
 0xac, 0x98, 0x2a, 0xac, 0x4a, 0xfe, 0x9f, 0xd9 },
 { 0xe4, 0x3a, 0x99, 0x2d, 0xc8, 0xfc, 0x5a, 0xd7,
 0xde, 0x49, 0x3e, 0x3d, 0x69, 0x6d, 0x6f, 0x85,
 0xd6, 0x43, 0x26, 0xec, 0x07, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x98, 0x6f,
 0x90, 0xc2, 0x53, 0x2c, 0xaf, 0x5b, 0xe7, 0xd8,
 0x82, 0x91, 0xba, 0xa8, 0x94, 0xa3, 0x95, 0x22,
 0x53, 0x28, 0xb1, 0x96, 0xbd, 0x6a, 0x8a, 0x64,
 0x3f, 0xe1, 0x2c, 0xd8, 0x7b, 0x27, 0xff, 0x88 },
 { 0xb0, 0xec, 0x73, 0x8d, 0x9c, 0x6f, 0xd9, 0x69,
 0xd0, 0x5f, 0x0b, 0x35, 0xf6, 0xc0, 0xed, 0x53,
 0xad, 0xca, 0xcc, 0xcd, 0x8e, 0x00, 0x00, 0x00,
 0x4b, 0xf9, 0x9f, 0x58, 0xee, 0x41, 0x96, 0xaf,
 0xb9, 0x70, 0x0e, 0x20, 0x11, 0x08, 0x30, 0xfe,
 0xa5, 0x39, 0x6b, 0x76, 0x28, 0x0e, 0x47, 0xfd,
 0x02, 0x2b, 0x6e, 0x81, 0x33, 0x1c, 0xa1, 0xa9,
 0xce, 0xd7, 0x29, 0xc3, 0x64, 0xbe, 0x77, 0x88 },
 { 0x4f, 0xdf, 0x00, 0xec, 0xb9, 0xbc, 0x04, 0xdd,
 0x19, 0x38, 0x61, 0x8f, 0xe5, 0xc4, 0xfb, 0xb8,
 0x80, 0xa8, 0x2b, 0x15, 0xf5, 0xb6, 0xbd, 0x72,
 0x1e, 0xc2, 0xea, 0xfe, 0x03, 0xc4, 0x62, 0x48,
 0xf7, 0xa6, 0xc2, 0x47, 0x89, 0x92, 0x80, 0xd6,
 0xd2, 0xf4, 0x2f, 0xf6, 0xb4, 0x7b, 0xf2, 0x20,
 0x79, 0xdf, 0xd4, 0xbf, 0xe8, 0x7b, 0xf0, 0xbb,
 0x4e, 0x71, 0xea, 0xcb, 0x1e, 0x28, 0x77, 0x35 } };
 uint8_t FNV512bvalues[NTstrings][FNV512size] = {
 { 0xe4, 0x3a, 0x99, 0x2d, 0xc8, 0xfc, 0x5a, 0xd7,

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 100

 0xde, 0x49, 0x3e, 0x3d, 0x69, 0x6d, 0x6f, 0x85,
 0xd6, 0x43, 0x26, 0xec, 0x28, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x98, 0x6f,
 0x90, 0xc2, 0x53, 0x2c, 0xaf, 0x5b, 0xe7, 0xd8,
 0x82, 0x91, 0xba, 0xa8, 0x94, 0xa3, 0x95, 0x22,
 0x53, 0x28, 0xb1, 0x96, 0xbd, 0x6a, 0x8a, 0x64,
 0x3f, 0xe1, 0x2c, 0xd8, 0x7b, 0x28, 0x2b, 0xbf },
 { 0x73, 0x17, 0xdf, 0xed, 0x6c, 0x70, 0xdf, 0xec,
 0x6a, 0xdf, 0xce, 0xd2, 0xa5, 0xe0, 0x4d, 0x7e,
 0xec, 0x74, 0x4e, 0x3c, 0xe9, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x17, 0x93, 0x3d, 0x7a,
 0xf4, 0x5d, 0x70, 0xde, 0xf4, 0x23, 0xa3, 0x16,
 0xf1, 0x41, 0x17, 0xdf, 0x27, 0x2c, 0xd0, 0xfd,
 0x6b, 0x85, 0xf0, 0xf7, 0xc9, 0xbf, 0x6c, 0x51,
 0x96, 0xb3, 0x16, 0x0d, 0x02, 0x97, 0x5f, 0x38 },
 { 0x82, 0xf6, 0xe1, 0x04, 0x96, 0xde, 0x78, 0x34,
 0xb0, 0x8b, 0x21, 0xef, 0x46, 0x4c, 0xd2, 0x47,
 0x9e, 0x1d, 0x25, 0xe0, 0xca, 0x00, 0x00, 0x65,
 0xcb, 0x74, 0x80, 0x27, 0x39, 0xe0, 0xe5, 0x71,
 0x75, 0x22, 0xec, 0xf6, 0xd1, 0xf9, 0xa5, 0x2f,
 0x5f, 0xee, 0xfb, 0x4f, 0xab, 0x22, 0x73, 0xfd,
 0xe8, 0x31, 0x0f, 0x1b, 0x7b, 0x5c, 0x9a, 0x84,
 0x22, 0x48, 0xf4, 0xcb, 0xfb, 0x32, 0x27, 0x38 },
 { 0xfa, 0x7e, 0xb9, 0x1e, 0xfb, 0x64, 0x64, 0x11,
 0x8a, 0x73, 0x33, 0xbd, 0x96, 0x3b, 0xb6, 0x1f,
 0x2c, 0x6f, 0xe2, 0xe3, 0x6c, 0xd7, 0xd3, 0xe7,
 0x37, 0x28, 0xda, 0x57, 0x0c, 0x1f, 0xaf, 0xc3,
 0xd0, 0x6e, 0x4d, 0xd9, 0x53, 0x4a, 0x9f, 0xd4,
 0xa5, 0x2c, 0x43, 0x8b, 0xd2, 0x11, 0x69, 0x83,
 0x4a, 0xe6, 0x0d, 0x20, 0x7e, 0x0f, 0x8a, 0xf6,
 0x1a, 0xa1, 0x96, 0x25, 0x68, 0x37, 0xb8, 0x03 } };

 funcName = "FNV-512";
 selected = FNV512selected;
/* test error checks */
 Terr = 0;
 TestInit (FNV512init, e512Context, FNV512context)
 TestInitBasis (FNV512initBasis, e512Context, FNV512context)
 CommonTest();
 e512Context.Computed = FNVclobber+FNV512state;
 TestBlockin (FNV512blockin, e512Context, FNV512context)
 TestStringin (FNV512stringin, e512Context, FNV512context)
 TestFilein (FNV512filein, e512Context, FNV512context)
 TestResult (FNV512result, e512Context, FNV512context)
 ErrTestReport ();
/* test actual results */
 Terr = 0;
 BasisZero(FNV512stringBasis,FNV512size,FNV512svalues)
 for (i = 0; i < NTstrings; ++i) {
 TestSTRBLKHash (FNV512string, FNV512block,
 FNV512svalues, FNV512bvalues, FNV512size)
/* try testing the incremental stuff */
 IncrHash(FNV512init,e512Context,FNV512blockin,FNV512result,
 FNV512initBasis,FNV512stringin,FNV512size,FNV512svalues)
/* now try testing file hash */
 TestFILEHash(FNV512file,FNV512svalues,FNV512size)
 }
 ValueTestReport ();

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 101

} /* end Test512 */

//**
// Code for testing FNV1024
//**
void Test1024 (void) {
 uint8_t FNV1024svalues[NTstrings][FNV1024size] = {
 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x5f, 0x7a, 0x76, 0x75, 0x8e, 0xcc, 0x4d,
 0x32, 0xe5, 0x6d, 0x5a, 0x59, 0x10, 0x28, 0xb7,
 0x4b, 0x29, 0xfc, 0x42, 0x23, 0xfd, 0xad, 0xa1,
 0x6c, 0x3b, 0xf3, 0x4e, 0xda, 0x36, 0x74, 0xda,
 0x9a, 0x21, 0xd9, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0xc6, 0xd7,
 0xeb, 0x6e, 0x73, 0x80, 0x27, 0x34, 0x51, 0x0a,
 0x55, 0x5f, 0x25, 0x6c, 0xc0, 0x05, 0xae, 0x55,
 0x6b, 0xde, 0x8c, 0xc9, 0xc6, 0xa9, 0x3b, 0x21,
 0xaf, 0xf4, 0xb1, 0x6c, 0x71, 0xee, 0x90, 0xb3 },
 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x98, 0xd7, 0xc1, 0x9f, 0xbc, 0xe6, 0x53, 0xdf,
 0x22, 0x1b, 0x9f, 0x71, 0x7d, 0x34, 0x90, 0xff,
 0x95, 0xca, 0x87, 0xfd, 0xae, 0xf3, 0x0d, 0x1b,
 0x82, 0x33, 0x72, 0xf8, 0x5b, 0x24, 0xa3, 0x72,
 0xf5, 0x0e, 0x57, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x07, 0x68, 0x5c, 0xd8,
 0x1a, 0x49, 0x1d, 0xbc, 0xcc, 0x21, 0xad, 0x06,
 0x64, 0x8d, 0x09, 0xa5, 0xc8, 0xcf, 0x5a, 0x78,
 0x48, 0x20, 0x54, 0xe9, 0x14, 0x70, 0xb3, 0x3d,
 0xde, 0x77, 0x25, 0x2c, 0xae, 0xf6, 0x95, 0xaa },
 { 0x00, 0x00, 0x06, 0x31, 0x17, 0x5f, 0xa7, 0xae,
 0x64, 0x3a, 0xd0, 0x87, 0x23, 0xd3, 0x12, 0xc9,
 0xfd, 0x02, 0x4a, 0xdb, 0x91, 0xf7, 0x7f, 0x6b,
 0x19, 0x58, 0x71, 0x97, 0xa2, 0x2b, 0xcd, 0xf2,
 0x37, 0x27, 0x16, 0x6c, 0x45, 0x72, 0xd0, 0xb9,
 0x85, 0xd5, 0xae, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42,
 0x70, 0xd1, 0x1e, 0xf4, 0x18, 0xef, 0x08, 0xb8,
 0xa4, 0x9e, 0x1e, 0x82, 0x5e, 0x54, 0x7e, 0xb3,
 0x99, 0x37, 0xf8, 0x19, 0x22, 0x2f, 0x3b, 0x7f,
 0xc9, 0x2a, 0x0e, 0x47, 0x07, 0x90, 0x08, 0x88,
 0x84, 0x7a, 0x55, 0x4b, 0xac, 0xec, 0x98, 0xb0 },
 { 0xf6, 0xf7, 0x47, 0xaf, 0x25, 0xa9, 0xde, 0x26,
 0xe8, 0xa4, 0x93, 0x43, 0x1e, 0x31, 0xb4, 0xa1,
 0xed, 0x2a, 0x92, 0x30, 0x4a, 0xf6, 0xca, 0x97,

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 102

 0x6b, 0xc1, 0xd9, 0x6f, 0xfc, 0xad, 0x35, 0x24,
 0x4e, 0x8d, 0x38, 0x5d, 0x55, 0xf4, 0x2f, 0xdc,
 0xc8, 0xf2, 0x99, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0xf7, 0xca, 0x87, 0xce,
 0x43, 0x22, 0x7b, 0x98, 0xc1, 0x44, 0x60, 0x7e,
 0x67, 0xcc, 0x50, 0xaf, 0x99, 0xbc, 0xc5, 0xd1,
 0x51, 0x4b, 0xb0, 0xd9, 0x23, 0xee, 0xde, 0xdd,
 0x69, 0xe8, 0xe7, 0x47, 0x02, 0x05, 0x08, 0x3a,
 0x0c, 0x02, 0x27, 0xd0, 0xcc, 0x69, 0xde, 0x23 } };
 uint8_t FNV1024bvalues[NTstrings][FNV1024size] = {
 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x98, 0xd7, 0xc1, 0x9f, 0xbc, 0xe6, 0x53, 0xdf,
 0x22, 0x1b, 0x9f, 0x71, 0x7d, 0x34, 0x90, 0xff,
 0x95, 0xca, 0x87, 0xfd, 0xae, 0xf3, 0x0d, 0x1b,
 0x82, 0x33, 0x72, 0xf8, 0x5b, 0x24, 0xa3, 0x72,
 0xf5, 0x0e, 0x38, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x07, 0x68, 0x5c, 0xd8,
 0x1a, 0x49, 0x1d, 0xbc, 0xcc, 0x21, 0xad, 0x06,
 0x64, 0x8d, 0x09, 0xa5, 0xc8, 0xcf, 0x5a, 0x78,
 0x48, 0x20, 0x54, 0xe9, 0x14, 0x70, 0xb3, 0x3d,
 0xde, 0x77, 0x25, 0x2c, 0xae, 0xf6, 0x65, 0x97 },
 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf4,
 0x6e, 0xf4, 0x1c, 0xd2, 0x3a, 0x4d, 0xcd, 0xd4,
 0x06, 0x83, 0x49, 0x63, 0xb7, 0x8e, 0x82, 0x24,
 0x1a, 0x6f, 0x5c, 0xb0, 0x6f, 0x40, 0x3c, 0xbd,
 0x5a, 0x7c, 0x89, 0x03, 0xce, 0xf6, 0xa5, 0xf4,
 0xfd, 0xd2, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x0b, 0x7c, 0xd7, 0xfb, 0x20,
 0xc3, 0x63, 0x1d, 0xc8, 0x90, 0x39, 0x52, 0xe9,
 0xee, 0xb7, 0xf6, 0x18, 0x69, 0x8f, 0x4c, 0x87,
 0xda, 0x23, 0xad, 0x74, 0xb2, 0xc5, 0xf6, 0xf1,
 0xfe, 0xc4, 0xa6, 0x4b, 0x54, 0x66, 0x18, 0xa2 },
 { 0x00, 0x09, 0xdc, 0x92, 0x10, 0x75, 0xfd, 0x8a,
 0x5e, 0x3e, 0x1a, 0x37, 0x2c, 0x72, 0xa5, 0x9b,
 0xb1, 0x0c, 0xca, 0x1a, 0x94, 0xc8, 0xb2, 0x38,
 0x7d, 0x63, 0xa7, 0xef, 0xa7, 0xfc, 0xa7, 0xa7,
 0x17, 0xa6, 0x4e, 0x6c, 0x2d, 0x62, 0xfb, 0x61,
 0x78, 0xf7, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x67, 0x08,
 0xf4, 0x4d, 0x00, 0x8a, 0xaa, 0xb0, 0x86, 0x57,

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 103

 0x49, 0x35, 0x50, 0x2c, 0x49, 0x08, 0x7c, 0x84,
 0x9b, 0xcb, 0xbe, 0xfa, 0x03, 0x3f, 0x45, 0x2a,
 0xf6, 0x38, 0x24, 0x26, 0xba, 0x5d, 0x3b, 0xb5,
 0x71, 0xb6, 0x46, 0x5b, 0x2a, 0xe8, 0xc8, 0xf0 },
 { 0xc8, 0x01, 0xf8, 0xe0, 0x8a, 0xe9, 0x1b, 0x18,
 0x0b, 0x98, 0xdd, 0x7d, 0x9f, 0x65, 0xce, 0xb6,
 0x87, 0xca, 0x86, 0x35, 0x8c, 0x69, 0x05, 0xf6,
 0x0a, 0x7d, 0x10, 0x14, 0xc1, 0x82, 0xb0, 0x4f,
 0xd6, 0x08, 0xa2, 0xca, 0x4d, 0xd6, 0x0a, 0x30,
 0x0a, 0x15, 0x68, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x01, 0x80, 0x45, 0x14, 0x9a, 0xde,
 0x1c, 0x79, 0xab, 0xe3, 0xb7, 0x09, 0xa4, 0x06,
 0xf7, 0xd9, 0x20, 0x51, 0x69, 0xbe, 0xc5, 0x9b,
 0x12, 0x61, 0x40, 0xbc, 0xb9, 0x6f, 0x9d, 0x5d,
 0x3e, 0x2e, 0xa9, 0x1e, 0x21, 0xcd, 0xc2, 0x04,
 0x9f, 0x57, 0xbe, 0xcd, 0x00, 0x2d, 0x7c, 0x47 } };
 long int iLen;
 int i, err;

 funcName = "FNV-1024";
 selected = FNV1024selected;
 /* test error checks */
 Terr = 0;
 TestInit (FNV1024init, e1024Context, FNV1024context)
 TestInitBasis (FNV1024initBasis, e1024Context, FNV1024context)
 CommonTest();
 e1024Context.Computed = FNVclobber+FNV1024state;
 TestBlockin (FNV1024blockin, e1024Context, FNV1024context)
 TestStringin (FNV1024stringin, e1024Context, FNV1024context)
 TestFilein (FNV1024filein, e1024Context, FNV1024context)
 TestResult (FNV1024result, e1024Context, FNV1024context)
 ErrTestReport ();
/* test actual results */
 Terr = 0;
 BasisZero(FNV1024stringBasis,FNV1024size,FNV1024svalues)
 for (i = 0; i < NTstrings; ++i) {
 TestSTRBLKHash (FNV1024string, FNV1024block,
 FNV1024svalues, FNV1024bvalues,
 FNV1024size)
/* try testing the incremental stuff */
 IncrHash(FNV1024init,e1024Context,FNV1024blockin,
 FNV1024result, FNV1024initBasis,
 FNV1024stringin,FNV1024size,FNV1024svalues)
/* now try testing file hash */
 TestFILEHash(FNV1024file,FNV1024svalues,FNV1024size)
 }
 ValueTestReport ();
} /* end Test1024 */

<CODE ENDS>

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 104

[C]

10. References

10.1. Normative References

8.4. Makefile
Below is a simple makefile to produce and run the test program or to provide a library with all
the FNV functions supplied in it.

WARNING: When actually using the following as a makefile, the five-character sequence "<TAB>"
must be changed to a tab (0x09) character!

<CODE BEGINS> file "makefile"

Makefile for fnv
If you extract this file from RFC 9923, the five-character sequence
<TAB> below must be replaced with a tab (0x09) character.

explanation:
<TAB>@echo Choose one of the following make targets:
<TAB>@echo make FNVhash -- test program
<TAB>@echo make libfnv.a -- library you can use
<TAB>@echo make clean -- removes all of the built targets

SRC=FNV32.c FNV64.c FNV128.c FNV256.c FNV512.c FNV1024.c
HDR=FNV32.h FNV64.h FNV128.h FNV256.h FNV512.h FNV1024.h \
<TAB>FNVconfig.h FNVErrorCodes.h fnv-private.h
OBJ=$(SRC:.c=.o)
CFLAGS=-Wall
AR=ar
ARFLAGS= rcs

FNVhash: libfnv.a main.c
<TAB>$(CC) $(CFLAGS) -o FNVhash main.c libfnv.a

libfnv.a: $(SRC) $(HDR)
<TAB>rm -f libfnv.a *.o
<TAB>$(CC) $(CFLAGS) -c $(SRC)
<TAB>$(AR) $(ARFLAGS) libfnv.a $(OBJ)

clean:
<TAB>rm -rf libfnv.a FNVhash *.o

<CODE ENDS>

9. IANA Considerations
This document has no IANA actions.

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 105

[RFC0020]

[RFC2119]

[RFC8174]

[BASIC]

[BFDseq]

[calc]

[deliantra]

[fasmlab]

[FIPS202]

[flatassembler]

[FNV]

[Fortran]

[FragCache]

 and , ,
, , 1988.

, , , ,
, October 1969, .

, , ,
, , March 1997,
.

, ,
, , , May 2017,

.

10.2. Informative References

, ,
.

, , , , and ,
, ,

, 29 March 2022,
.

 and , ,
.

, , 16 October 2022,
.

, ,
.

,
, , , August 2015,

.

, , 2025,
.

, , and , ,
.

,
, .

, , , 2009,

.

Kernighan, B. W. D. M. Ritchie "The C Programming Language, 2nd Edition"
ISBN-10 0-13-110362-8 ISBN-13 978-0131103627

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI 10.17487/
RFC0020 <https://www.rfc-editor.org/info/rfc20>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Diamond, W. "FNV32 PowerBASIC inline x86 assembler" <http://
www.isthe.com/chongo/tech/comp/fnv/index.html#PowerBASIC>

Jethanandani, M. Agarwal, S. Mishra, A. Saxena, A. A. DeKok "Secure BFD
Sequence Numbers" Work in Progress Internet-Draft, draft-ietf-bfd-secure-
sequence-numbers-09 <https://datatracker.ietf.org/doc/html/
draft-ietf-bfd-secure-sequence-numbers-09>

Bell, D. L. Noll "Calc - C-style arbitrary precision calculator" <http://
www.isthe.com/chongo/tech/comp/calc/index.html>

The Deliantra Team "Deliantra MMORPG" <http://
www.deliantra.net/>

Fasmlab "Integrated Development Environments" <https://sourceforge.net/
projects/fasmlab/>

NIST "SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions" FIPS PUB 202 DOI 10.6028/NIST.FIPS.202 <https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf>

Grysztar, T. "flat assembler: Assembly language resources" <https://
flatassembler.net/>

Fowler, G. Noll, L. K. Vo "FNV (Fowler/Noll/Vo)" <http://www.isthe.com/
chongo/tech/comp/fnv/index.html>

Fortran Standard Library "A community driven standard library for (modern)
Fortran" <https://stdlib.fortran-lang.org/>

Weaver, E. "Improving Running Components at Twitter" Slide 31 <https://
www.slideshare.net/slideshow/improving-running-components-at-twitter/
1141786>

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 106

https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://www.isthe.com/chongo/tech/comp/fnv/index.html#PowerBASIC
http://www.isthe.com/chongo/tech/comp/fnv/index.html#PowerBASIC
https://datatracker.ietf.org/doc/html/draft-ietf-bfd-secure-sequence-numbers-09
https://datatracker.ietf.org/doc/html/draft-ietf-bfd-secure-sequence-numbers-09
http://www.isthe.com/chongo/tech/comp/calc/index.html
http://www.isthe.com/chongo/tech/comp/calc/index.html
http://www.deliantra.net/
http://www.deliantra.net/
https://sourceforge.net/projects/fasmlab/
https://sourceforge.net/projects/fasmlab/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://flatassembler.net/
https://flatassembler.net/
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html
https://stdlib.fortran-lang.org/
https://www.slideshare.net/slideshow/improving-running-components-at-twitter/1141786
https://www.slideshare.net/slideshow/improving-running-components-at-twitter/1141786
https://www.slideshare.net/slideshow/improving-running-components-at-twitter/1141786

[FreeBSD]

[FRET]

[IEEE]

[IEEE8021Q-2022]

[IEN137]

[IPv6flow]

[LCN2]

[Leprechaun]

[libketama]

[libsir]

[memcache]

[NCHF]

[RFC3174]

, ,
, 2025, .

, , 19 January 2006,
.

, ,
.

,
, ,

, December 2022, .

, , , 1 April 1980,
.

, , and ,
,

, , March 2012,
.

 and , , , 19 November 2025,
.

, ,
.

, , 10
April 2007,

.

 and , , , 3
December 2025, .

, , , , and ,
, 30 April 2023, .

 and , , ,
, September 2001,

.

Baio, D. G. "FreeBSD 4.3 Release Notes (Last modified on 21 February 2021)"
The Free BSD Project <https://www.freebsd.org/releases/4.3R/notes.html>

McCarthy, M. "FRET: helping understand file formats" <https://
fret.sourceforge.net/>

Institute for Electrical and Electronics Engineers "IEEE website" <https://
www.ieee.org/>

IEEE "IEEE Standard for Local and Metropolitan Area Networks--Bridges
and Bridged Networks" DOI 10.1109/IEEESTD.2022.10004498 IEEE Std
802.1Q-2022 <https://ieeexplore.ieee.org/document/10004498>

Cohen, D. "On Holy Wars and A Plea For Peace" IEN 137 <https://
www.rfc-editor.org/ien/ien137.txt>

Anderson, L. Brownlee, N. B. E. Carpenter "Comparing Hash Function
Algorithms for the IPv6 Flow Label" University of Auckland Department of
Computer Science Technical Report 2012-002 ISSN 1173-3500
<https://www.cs.auckland.ac.nz/~brian/flowhashRep.pdf>

Noll, L. C. Ferguson "lcn2 / fnv" commit 953444c
<https://github.com/lcn2/fnv>

Sanmayce project "Sanmayce project 'Underdog Way'" <http://
www.sanmayce.com/Downloads/>

Jones, R. "libketama: Consistent Hashing library for memcached clients"
<https://www.metabrew.com/article/libketama-consistent-hashing-

algo-memcached-clients>

Lederman, R. J. Johnson "libsir logging library" commit 0ae0173
<https://github.com/aremmell/libsir>

Dovgal, A. Joye, P. Radtke, H. Johansson, M. T. Srnka "PHP memcached
extension" <https://pecl.php.net/package/memcache>

 and ,
,

, , February 2025,
.

Hayes, C. D. Malone "Questioning the Criteria for Evaluating Non-
Cryptographic Hash Functions" Communications of the ACM, Vol. 68 No. 2, pp.
46-51 DOI 10.1145/3704255 <https://cacm.acm.org/practice/
questioning-the-criteria-for-evaluating-non-cryptographic-hash-functions/>

 and ,
, ,

, June 2024,
.

Hayes, C. D. Malone "An Evaluation of FNV Non-Cryptographic Hash
Functions" Proceedings of the 35th Irish Signals and Systems Conference (ISSC)
DOI 10.1109/ISSC61953.2024.10603139 <https://ieeexplore.ieee.org/
abstract/document/10603139>

Eastlake 3rd, D. P. Jones "US Secure Hash Algorithm 1 (SHA1)" RFC 3174
DOI 10.17487/RFC3174 <https://www.rfc-editor.org/info/
rfc3174>

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 107

https://www.freebsd.org/releases/4.3R/notes.html
https://fret.sourceforge.net/
https://fret.sourceforge.net/
https://www.ieee.org/
https://www.ieee.org/
https://ieeexplore.ieee.org/document/10004498
https://www.rfc-editor.org/ien/ien137.txt
https://www.rfc-editor.org/ien/ien137.txt
https://www.cs.auckland.ac.nz/~brian/flowhashRep.pdf
https://github.com/lcn2/fnv
http://www.sanmayce.com/Downloads/
http://www.sanmayce.com/Downloads/
https://www.metabrew.com/article/libketama-consistent-hashing-algo-memcached-clients
https://www.metabrew.com/article/libketama-consistent-hashing-algo-memcached-clients
https://github.com/aremmell/libsir
https://pecl.php.net/package/memcache
https://cacm.acm.org/practice/questioning-the-criteria-for-evaluating-non-cryptographic-hash-functions/
https://cacm.acm.org/practice/questioning-the-criteria-for-evaluating-non-cryptographic-hash-functions/
https://ieeexplore.ieee.org/abstract/document/10603139
https://ieeexplore.ieee.org/abstract/document/10603139
https://www.rfc-editor.org/info/rfc3174
https://www.rfc-editor.org/info/rfc3174

[RFC6194]

[RFC6234]

[RFC6437]

[RFC7357]

[RFC7873]

[RFC8200]

[RimStone]

[Smash]

[twistylists]

, , , and ,
, , ,

March 2011, .

 and ,
, , , May 2011,

.

, , , and ,
, , , November 2011,

.

, , , , and ,

, , , September
2014, .

 and , ,
, , May 2016,

.

 and , ,
, , , July 2017,

.

, , 2025, .

, , 8 December 2024,
.

, , 6
November 2012, .

Polk, T. Chen, L. Turner, S. P. Hoffman "Security Considerations for the
SHA-0 and SHA-1 Message-Digest Algorithms" RFC 6194 DOI 10.17487/RFC6194

<https://www.rfc-editor.org/info/rfc6194>

Eastlake 3rd, D. T. Hansen "US Secure Hash Algorithms (SHA and SHA-
based HMAC and HKDF)" RFC 6234 DOI 10.17487/RFC6234 <https://
www.rfc-editor.org/info/rfc6234>

Amante, S. Carpenter, B. Jiang, S. J. Rajahalme "IPv6 Flow Label
Specification" RFC 6437 DOI 10.17487/RFC6437 <https://
www.rfc-editor.org/info/rfc6437>

Zhai, H. Hu, F. Perlman, R. Eastlake 3rd, D. O. Stokes "Transparent
Interconnection of Lots of Links (TRILL): End Station Address Distribution
Information (ESADI) Protocol" RFC 7357 DOI 10.17487/RFC7357

<https://www.rfc-editor.org/info/rfc7357>

Eastlake 3rd, D. M. Andrews "Domain Name System (DNS) Cookies" RFC
7873 DOI 10.17487/RFC7873 <https://www.rfc-editor.org/info/
rfc7873>

Deering, S. R. Hinden "Internet Protocol, Version 6 (IPv6) Specification" STD
86 RFC 8200 DOI 10.17487/RFC8200 <https://www.rfc-editor.org/info/
rfc8200>

Gliim LLC "Golf Language Hash Tables" <https://rimstone-lang.com/>

Emms, S. "Smash - find duplicate files super fast" <https://
www.linuxlinks.com/smash-find-duplicate-files-super-fast/>

Zethmayr, D. "twistylists: A no-sort namespace engine; developers invited"
<https://twistylists.blogspot.com/>

Appendix A. Work Comparison with SHA-1 and SHA-256
This appendix provides a simplistic rough comparison of the level of effort required to compute
FNV-1a, SHA-1 , and SHA-256 for short messages -- that is, those less than
around 50 bytes. Some CPUs may have special instructions or other hardware to accelerate
certain cryptographic operations, so if performance is particularly important for an application,
benchmarking on the target platform would be appropriate.

Ignoring transfer of control and conditional tests, and equating all logical and arithmetic
operations, FNV requires two operations per byte: an XOR operation and a multiply operation.

SHA-1 and SHA-256 are actually designed to accept a bit vector input, although almost all
computer uses apply them to an integer number of bytes. They both process blocks of 512 bits
(64 bytes), and we estimate the effort involved in processing a full block. There is some overhead
per message to indicate message termination and size. Assuming that the message is an even

[RFC3174] [RFC6234]

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 108

https://www.rfc-editor.org/info/rfc6194
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6437
https://www.rfc-editor.org/info/rfc6437
https://www.rfc-editor.org/info/rfc7357
https://www.rfc-editor.org/info/rfc7873
https://www.rfc-editor.org/info/rfc7873
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://rimstone-lang.com/
https://www.linuxlinks.com/smash-find-duplicate-files-super-fast/
https://www.linuxlinks.com/smash-find-duplicate-files-super-fast/
https://twistylists.blogspot.com/

Appendix B. Previous IETF FNV Code
FNV-1a was referenced in draft-ietf-tls-cached-info-08 (which was ultimately published as RFC
7924, but RFC 7924 no longer contains the code below). Herein, we provide the Java code for
FNV64 from that earlier draft, included with the kind permission of the author:

number of bytes, this overhead would be 9 bytes for SHA-1 and 17 bytes for SHA-256. So,
assuming that the message with that overhead fits into one block, the message would be up to 55
bytes for SHA-1 or up to 47 bytes for SHA-256.

SHA-1 is a relatively weak cryptographic hash function producing a 160-bit hash. It has been
substantially broken . Ignoring SHA-1's initial setup, transfer of control, and
conditional tests, but counting all logical and arithmetic operations, including counting indexing
as an addition, SHA-1 requires 1,744 operations per 64-byte block or 31.07 operations per byte
for a message of 55 bytes. By this rough measure, it is a little over 15.5 times the effort of FNV.

SHA-256 is, at the time of publication, considered to be a stronger cryptographic hash function
than SHA-1. Ignoring SHA-256's initial setup, transfer of control, and conditional tests, but
counting all logical and arithmetic operations, SHA-1 requires 2,058 operations per 64-byte block
or 48.79 operations per byte for a message of 47 bytes. By this rough measure, it is over 24 times
the effort of FNV.

However, FNV is commonly used for short inputs, so doing a comparison of such inputs is
relevant. Using the above comparison method, for inputs of N bytes, where N is <= 55 so SHA-1
will take one block, the ratio of the effort for SHA-1 to the effort for FNV will be 872/N. For inputs
of N bytes, where N is <= 47 so SHA-256 will take one block, the ratio of the effort for SHA-256 to
the effort for FNV will be 1029/N. Some examples are given below.

Example Length in
Bytes

SHA-1 Effort Relative to
FNV Effort

SHA-256 Effort Relative to
FNV Effort

IPv4
address

4 218 514

MAC
address

6 145 171

IPv6
address

16 54 64

Table 3

[RFC6194]

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 109

<CODE BEGINS>
 /*
 * Java code sample, implementing 64 bit FNV-1a
 * By Stefan Santesson
 */

import java.math.BigInteger;

public class FNV {

 static public BigInteger getFNV1a64Digest (String inpString) {

 BigInteger m = new BigInteger("2").pow(64);
 BigInteger fnvPrime = new BigInteger("1099511628211");
 BigInteger fnvOffsetBasis = new BigInteger
 ("14695981039346656037");

 BigInteger digest = fnvOffsetBasis;

 for (int i = 0; i < inpString.length(); i++) {
 digest = digest.xor(BigInteger.valueOf(
 (int) inpString.charAt(i)));
 digest = digest.multiply(fnvPrime).mod(m);
 }
 return (digest);

 }
}

<CODE ENDS>

Acknowledgements
The contributions of the following, listed in alphabetical order, are gratefully acknowledged:

, , , , ,
, , , , , , and

.

Roman Donchenko Frank Ellermann Stephen Farrell Tony Finch Paul Hoffman Charlie
Kaufman Eliot Lear Bob Moskowitz Gayle Noble Stefan Santesson Mukund Sivaraman
Paul Wouters

Authors' Addresses
Glenn S. Fowler
Google

glenn.s.fowler@gmail.comEmail:

Landon Curt Noll
contact-landon@asthe.comEmail:

http://www.isthe.com/chongoURI:

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 110

mailto:glenn.s.fowler@gmail.com
mailto:contact-landon@asthe.com
http://www.isthe.com/chongo

Kiem-Phong Vo
Google

phongvo@gmail.comEmail:

Donald E. Eastlake 3rd
Independent
2386 Panoramic Circle

, Apopka Florida 32703
United States of America

+1-508-333-2270Phone:
d3e3e3@gmail.comEmail:

Tony Hansen
AT&T
200 Laurel Avenue South

, Middletown New Jersey 07748
United States of America

tony@att.comEmail:

RFC 9923 FNV January 2026

Fowler, et al. Informational Page 111

mailto:phongvo@gmail.com
tel:+1-508-333-2270
mailto:d3e3e3@gmail.com
mailto:tony@att.com

	RFC 9923
	The FNV Non-Cryptographic Hash Algorithm
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions Used in This Document
	1.2. Applicability of Non-Cryptographic Hashes and FNV
	1.3. FNV Hash Uses
	1.4. Why Is FNV Non-Cryptographic?

	2. FNV Basics
	2.1. FNV Primes
	2.2. FNV offset_basis
	2.3. FNV Endianism

	3. Other Hash Sizes and XOR Folding
	4. Hashing Multiple Values Together
	5. FNV Constants
	6. Security Considerations
	6.1. Inducing Collisions

	7. Historical Notes
	8. The Source Code
	8.1. Source Code Details
	8.1.1. FNV Functions Available
	8.1.2. Source Files and 64-Bit Support
	8.1.3. Command Line Interface

	8.2. FNV-1a C Code
	8.2.1. FNV32 Code
	8.2.2. FNV64 Code
	8.2.3. FNV128 Code
	8.2.4. FNV256 Code
	8.2.5. FNV512 Code
	8.2.6. FNV1024 Code

	8.3. FNV Test Code
	8.4. Makefile

	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Work Comparison with SHA-1 and SHA-256
	Appendix B. Previous IETF FNV Code
	Acknowledgements
	Authors' Addresses

